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Abstract 

In this manuscript, we discuss the existence of solutions in a Banach space of boundary value problem for Caputo-
Hadamard fractional differential inclusions. 

Key words: fractional differential inclusion; Caputo-Hadamard fractional derivate; fixed point theorem; 
Mönch’s fixed point theorem; Kuratowski measure of noncompactness. 
 . 

1. INTRODUCTION

The Fractional calculus has evolved into an important and interesting field of research in view of its 
numerous applications in technical and applied sciences. The mathematical modeling of many real 
world phenomena based on fractional-order operators is regarded as better and improved than the 
one depending on integer-order operators. In particular, fractional calculus has played a significant 
role in the recent development of special functions and integral transforms, signal processing, 
control theory, bioengineering and biomedical, viscoelasticity, finance, stochastic processes, wave 
and diffusion phenomena, plasma physics, social sciences, etc. For further details and applications. 

The history of quantum calculus(QC) dates back to the work of the British mathematician Frank 
Hilton Jackson. In 1910, he gave a new definition of the derivative, by which the basic principles of 
quantum calculus. Jackson removed the concept of limit from the definition of the derivative and 
introduced two types of operators, namely q-derivative and h-derivative. Of course, q-derivative’s 
growth was higher than h-derivative and it didn’t take long for it to enter the field of Fractional 
Calculus. Fractional q-derivative has both the a  dvantages of Fractional Calculus and due to the 
discreteness of the space, it provides the possibility of using the computer in solving and simulating 
complex equations. For the same reason, in the last decade, q-derivative has received a lot of 
attention from researchers and many articles have been published in this field. On the other hand, 
Set-Valued mappings, namely Multifunction, have interesting features whose properties have been 
investigated from different aspects and recently used in modeling due to their ability to interpret 
physical phenomena with shock.  
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2. CONTENT  

 
 
This article deals the existence of solutions for boundary value problems for fractional order 
differential inclusions. We consider the boundary-value problem 
. 
 

DHc
α 𝑦𝑦(𝑡𝑡) ∈ 𝐹𝐹�𝑡𝑡,𝑦𝑦(𝑡𝑡)�,     for almost all t ∈ J = [1, T], 0 < 𝛼𝛼 ≤ 1  (1.1) 
                a𝑦𝑦(1) = 𝑐𝑐,                                                 (1.2) 

 
Where T > 0 , 𝑞𝑞 ∈ [0,1] and  DHc

α  is the Caputo-Hadamard  fractional derivative, F ∶ J × ℜ → ℘(ℜ)   
is a multivalued map, ℘(ℜ) is the family of all nonamply subsets of  ℜ and 𝑎𝑎, 𝑐𝑐 ∈  ℜ . 
 
 
 
  
3. CONCLUSIONS  
 
 In this paper, we present existence results for the problems (1)–(2) in the case  where the right hand 
side is convex-valued. This result relies on the set-valued  analog of Mönch’s fixed point theorem 
combined with the technique of measure  of noncompactness. Recently, this has proved to be a 
valuable tool in studying  fractional differential equations and inclusions in Banach spaces; 
 
4. REFERENCES 
 
[1] N. Guerraiche, S. Hamani and J.Henderson, Boundary value problems for Differential Inclusions with 
Integral and Anti-periodie Conditions, Communication on Applied Nonlinear Analyses 23(2016), 3,33-46 
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ON THE LMI FEASIBILITY IN ANALYZING THE STABILITY OF 2D 
DYNAMICAL SYSTEMS. THE CASE OF SYSTEMS ARISING FROM 

EXCITABLE MEDIA  

Adela IONESCU1 

1University of Craiova, 13 A.I. Cuza, Craiova, Romania 

adelajaneta2015@gmail.com  

Abstract 
Construction of a Control Lyapunov Function (CLF) for a nonlinear system is generally a difficult problem, but 
once a CLF is found, stabilization of the system is straight-forward. The present paper focuses on the efficiency of 
using linear matrix inequalities (LMIs) and convex programming in process control applications. Mathematical 
models arising from excitable media are taken into account.  

Key words: mixing flow; kinematics; linear matrix inequality; convex programming; Lyapunov inequality. 

1. INTRODUCTION
A very wide variety of problems arising in system and control theory can be reduced to a few 
standard convex or quasi-convex optimization problems involving linear matrix inequalities 
(LMIs).
The types of problems where LMIs are implied are widespread, including:

 construction of quadratic Lyapunov functions for stability and performance analysis of
linear differential inclusions;
 synthesis of state-feedback and quadratic Lyapunov functions for stochastic and delay
systems.

A linear matrix inequality (LMI) is a convex constraint. Consequently, optimization problems with 
convex objective functions and LMI constraints are solvable relatively efficiently with software. 
The form of an LMI is quite general. Linear inequalities, convex quadratic inequalities, matrix norm 
inequalities, and various constraints from control theory such as Lyapunov and Riccati inequalities 
can all be written as LMIs.  
A LMI has the following form: 

𝐹𝐹(𝑥𝑥) = 𝐹𝐹0 + ∑ 𝑥𝑥𝑖𝑖𝐹𝐹𝑖𝑖  > 0,   𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚,   𝐹𝐹𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚
𝑖𝑖=1 (1) 

where F(x) is a positive definite matrix, and the symetric matrices Fi are fixed, x being the variable. 
Thus, F(x) is an affine funcion of the elements of x. 

In this context, a necessary and sufficient condition for the linear system: 
𝑥̇𝑥 = 𝐴𝐴𝐴𝐴  (2) 

to be stable is the existence of a Lyapunov function 
𝑉𝑉(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝑃𝑃𝑃𝑃 (3) 

with P a symetric positive matrix with the derivative negative for all nonzero x, which implies the 
well known Lyapunov inequality: 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 < 0                                                                                                  (4) 
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The relation (4) is a LMI, with the variable P. 
There are a lot of inequalities and control properties of interest which can be expressed in terms of 
LMI. 
Let us take into account the problem of analyzing the stability of a system like (2), in the form: 
 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴,𝐴𝐴 = ∑ 𝜆𝜆𝑖𝑖𝐴𝐴𝑖𝑖 ,   ∀𝐿𝐿
𝑖𝑖=1  𝜆𝜆𝑖𝑖 ≥ 0,∑ 𝜆𝜆𝑖𝑖𝐿𝐿

𝑖𝑖=1 = 1                                                (5) 
 
A necessary and sufficient condition for the existence of a quadratic Lyapunov function (3) which 
proves the stability of (5) is the existence of a positive 𝑃𝑃 = 𝑃𝑃𝑇𝑇  that satisfies  
 

       𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

= 𝑥̇𝑥𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑥𝑥𝑇𝑇𝑃𝑃𝑥̇𝑥 < 0,∀𝑥𝑥 ≠ 0                                                                   (6) 
 

which implies the system of inequalities 
𝐴𝐴𝑖𝑖𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴𝑖𝑖 < 0,∀ 𝑖𝑖 = 1,2, … , 𝐿𝐿                                                                         (7) 

 
The search of a P satisfying the inequalities (7) is a LMI feasibility problem . 
 
 
 
 2. CONTENT 
In this paper the LMI feasibility problem context will be analysed for systems arising from mixing 
flow dynamics. 
In the kinematics of mixing, models are focused on stretching and folding phenomena for material 
elements in a basic fluid, where basic mechanisms can act in simple chaotic flows, and thus some 
“windows” for some complicated situations are opened.  
When approaching the mixing model as a dynamical system, it is convenient to start from the 
widespread basic 2d mathematical form: 

� 𝑥𝑥1̇ = 𝐺𝐺𝑥𝑥2
𝑥𝑥2̇ = 𝐾𝐾𝐾𝐾𝑥𝑥1,   − 1 < 𝐾𝐾 < 1,   𝐺𝐺 ∈ 𝑅𝑅                                                                          (8) 

For this system, the solution of the associated Cauchy problem has an interesting geometry: the 
streamlines correspond to some ellipses for K negative, and to some hyperbolas for K positive. 
The stability analysis from the LMI standpoint will be applied both for this system, and for a 
slightly perturbed form of it, namely 

� 𝑥𝑥1̇ = 𝐺𝐺𝑥𝑥2 + 𝑥𝑥1
𝑥𝑥2̇ = 𝐾𝐾𝐾𝐾𝑥𝑥1 − 𝑥𝑥2   − 1 < 𝐾𝐾 < 1,   𝐺𝐺 ∈ 𝑅𝑅                                                   (9) 

For the system (9), the construction of a convex hull for the Jacobian of the system is taken into 
account, since it is a nonlinear system and in the nonlinear case, the construction of the convex hull 
must be approached.  
 
 
 
3.  CONCLUSIONS  
In the paper it is found that in some feasible conditions for the parameters, the 2d mixing model 
dynamical system can admit a quadratic Lyapunov function, so it can be stabilized from the LMI 
standpoint.  
In the perturbed form of the system, it is found that for some basic testing values of the matrix P, a 
set of coefficients can be generated, so that the LMI feasibility problem can be approached. A set of 
feasible conditions for the parameters is obtained in this case too, which allows the further study of 
the stability in some other perturbation cases for the mixing model.  
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Abstract  
This research paper proposes a Visual AI-Based Assistant designed to improve driver awareness and road safety 
through intelligent monitoring and adaptive feedback. The system uses computer vision and machine learning 
techniques to analyse facial expressions, eye movement, posture enabling real-time detection of fatigue, distraction and 
stress while driving. By interpreting behavioural and environmental data, such as blink rate, yawning frequency and 
sitting posture, the designed driving assistant can send visual and vocal alerts to prevent accidents caused by 
inattention or tiredness. The systems innovation lies in both internal and external factors providing personalized 
recommendations for safer driving, such as suggesting rest breaks during high-risk conditions, representing a step 
toward smarter, more responsible, and safer driving experiences. 

Key words: AI assistant, Computer Vision, Intelligent Transportation Systems, Smart Driving, Machine Learning 

1. INTRODUCTION
Road safety remains one of the most important global challenges, as tiredness, distraction and stress are among 
the leading causes of traffic accidents. According to recent studies, driver inattention contributes to a 
significant percentage of fatal crashes each year. As vehicles become increasingly equipped with digital 
systems, integrating Artificial Intelligence (AI), Machine Learning (ML) into transportation has appeared as a 
promising approach to enhancing driver awareness and minimizing risk. 
In this context, the development of intelligent driver assistance systems has shifted from traditional sensor-
based alerts to advanced visual monitoring and predictive analytics. AI technologies enable continuous 
assessment of human interactions with a variety of factors, allowing the system not to only detect risky 
situations, but also to anticipate them before they escalate. 
2. CONTENT
This research paper proposes the development of an Artificial Intelligence-based Assistant (AIA), see 
Figure 1, to increase drivers' awareness and boost road safety by monitoring their behavior, physical 
condition, and the vehicle's interior environment.
The system integrates computer vision and machine learning to evaluate facial expressions and ocular 
activity (such as blink rate, yawning frequency, and eye closure duration) in order to detect exhaustion 
and tiredness in real-time.
Also, the AIA provides vocal feedback to alert the driver and prevent accidents caused by inattention 
or sleep episodes. Beyond detection of fatigue, the system can identify forgotten objects inside the 
car, such as mobile phones, bags, or even living beings like pets or children, reducing the risk of 
dangerous mistakes. It can also alert when it detects unsafe behaviors while driving, such as sitting 
too close to the wheel, driving with only one hand on it, or even with no hands. To further improve 
situational awareness, the AIA has facial tension analysis by evaluating movements in facial muscles,
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the jaw, and eyebrows to identify signs of stress, and it can suggest relaxing actions or audio content 
to help the driver remain calm and focused.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: AIA System Architecture Overview 
 

A significant innovation of the system is its ability to combine internal data (driver behaviour and environment) 
with external factors like nighttime, traffic, and storms. When combined with fatigue indicators, this enables 
the AIA to provide suggestions such as taking a break to minimize accident risks. Distraction detection is 
another feature of the system that detects when a driver is not paying attention to the road. After each trip, the 
assistant generates a performance summary, providing comments on the driver's actions and underlining areas 
that require improvement for a better awareness of personal driving habits and the promotion of safer practices. 
 
3. CONCLUSIONS 
 
The AIA system represents a step forward in integrating AI and computer vision into intelligent 
transportation systems. By continuously analysing facial expressions, ocular movements and driver 
posture, the assistant can significantly improve awareness and prevent accidents caused by human 
error. This integration allows the AIA to provide personalized feedback fostering proactive and 
responsible driving habits. 

Input Device with Camera 

AI Processing Unit (ML Models) 

Feedback & Alerts, Trip Summary 

Face, Eye & Objects Tracker 

Driver State & Risk Detection Layer 
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Abstract
This paper presents a study on data fitting techniques based on analytical probability distributions, including Gaussian, 
Poisson, and Landau distributions. The work focuses on comparing these models and evaluating their ability to describe 
various types of experimental data. The mathematical approach involves parameter estimation, error propagation, and 
statistical goodness-of-fit analysis, combining concepts from applied mathematics, statistics, and computational 
modeling. As a practical implementation, a Python-based application with a graphical user interface (GUI) has been 
developed, allowing users to upload x–y datasets, select the desired fitting function, and visualize both the data and the 
fitted curve interactively. This tool supports data-driven analysis and enables intuitive exploration of model performance. 
The results emphasize the importance of mathematical modeling and computational tools in the quantitative interpretation 
and optimization of experimental measurements.

Key words: data fitting; Gaussian distribution; Poisson statistics; applied mathematics; Python interface; computational 
modeling.

1. INTRODUCTION

The mathematical modeling of physical phenomena often involves fitting experimental data to 
analytical distributions that describe underlying stochastic processes. Gaussian, Poisson and Landau 
distributions are widely used in experimental physics for modeling noise, fluctuations, and 
asymmetric peak structures. This paper explores these functions both from a mathematical 
perspective and through computational implementation. The approach is complemented by the 
development of a Python-based software tool designed to perform real-time data fitting with graphical 
visualization capabilities.

2. CONTENT

The study focuses on understanding how different probability distributions can describe various types 
of experimental data. Each function models a specific type of behavior: the Gaussian function 
represents normal statistical fluctuations, the Poisson distribution describes discrete counting 
processes, and the Landau distribution is typically used for energy loss in particle detection 
experiments. By comparing these models, we can observe how different mathematical shapes fit real 
or simulated datasets and what parameters influence the quality of the fit.

A Python-based application with a graphical user interface (GUI) has been developed to allow 
interactive data analysis. Users can import (x,y) datasets, select the desired fitting model, and visualize 
both the experimental data and fitted curve in real time. The fitting procedure employs numerical 
optimization methods, including least-squares and maximum-likelihood estimation, to iteratively 
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determine the parameters that best represent the data. Goodness-of-fit is evaluated using the chi-
squared (𝝌𝟐) statistic, the coefficient of determination (𝑹𝟐), and residual analysis.

Mathematically, the fitting functions are expressed as:
● Gaussian: 𝑓(𝑥) = 𝐴 exp ( ― (𝑥―𝜇)2

2𝜎2 ), where 𝐴 represents the amplitude, 𝜇 the mean, and 𝜎 
the standard deviation controlling the peak width.

● Poisson: 𝑓(𝑥) = 𝑒―λ ∙ λˣ
𝑥!, where 𝑘 is the observed number of events and 𝜆 is the expected 

mean count per interval.
● Landau (Moyal approximation): 𝑓(𝑥) = 𝐴exp( ― λ+e―λ

2
), where λ = x―x0

𝜉 , where 𝐴is the 
amplitude, 𝑥0 is the most probable value (peak position), 𝜉 controls the width and asymmetry 
of the distribution, and 𝜆 is a dimensionless variable.

In essence, the parameters (A, μ, σ, λ, x₀, ξ) have specific physical and statistical meanings that define 
the position, width, and scale of each distribution. By adjusting these parameters through 
optimization, the program finds the best mathematical representation of the given data. This approach 
not only demonstrates the use of applied mathematics in data analysis but also highlights the 
importance of computational tools in supporting experimental interpretation and visualization.

Results show that the three models can effectively describe different types of datasets depending on 
the underlying stochastic process. Gaussian fitting is particularly suitable for normally distributed 
noise, Poisson accurately captures counting statistics, and Landau provides a reliable representation 
for skewed peak structures, such as energy-loss measurements in particle detectors.

3. CONCLUSIONS

This study highlights the importance of combining applied mathematics with computational tools in 
experimental analysis, enabling users to test multiple models and explore data-driven interpretations. 
Future work may include automated model selection, uncertainty estimation, and extension to 
additional distributions relevant to experimental physics and engineering applications.
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Abstract 
This paper investigates a mathematical formulation of approximate feedback linearization for nonlinear systems in 
which the relative degree is not constant or globally defined. To compensate for the residual nonlinearities that arise 
from this approximation, an auxiliary input is introduced to control the convergence rate. The formulation integrates 
Lyapunov stability theory with the feedback linearization framework and introduces a control barrier function-type 
auxiliary input expressed through linear matrix inequalities, resulting in a convex optimization structure. The results 
show that local asymptotic behavior and a controllable convergence rate can be ensured.  

Key words: approximate feedback linearization; coordinate transformation; Lyapunov stability; convergence rate; 
control barrier function; linear matrix inequalities. 

1. INTRODUCTION
Exact feedback linearization (EFL) is a fundamental method in nonlinear control, enabling the 
transformation of a set of first order nonlinear equations into an equivalent set of first order linear 
differential equations through a suitable coordinate change. To address its limitation in the presence 
of singularities, this paper proposes an approximate feedback linearization approach that preserves 
local linear behavior while compensating for residual nonlinearities. The objective is to ensure 
stability and regulate the convergence rate toward equilibrium through a compensation strategy 
based on control barrier functions (CBFs) and a linear matrix inequality (LMI)-based 
optimization framework. This formulation extends classical linearization techniques to systems 
where exact cancellation of nonlinearities is not feasible. 

2. CONTENT
Consider an 𝑛-dimensional, input-affine nonlinear system described by the ordinary differential 
equation (ODE) model: 

𝛴!: $
𝑥̇(𝑡) = 𝑓,𝑥(𝑡)- + 𝑔,𝑥(𝑡)-𝑢(𝑡);
𝑦(𝑡) = ℎ(𝑥(𝑡)),																														

(1)

where 𝑥(𝑡) ∈ 𝐷 ⊆ ℝ! denotes the state, 𝑢(𝑡) ∈ ℝ the input and 𝑦(𝑡) ∈ ℝ the output. Mappings 𝑓, 𝑔 ∶
	𝐷	 ⊆ ℝ! 	→ ℝ! and ℎ ∶ 	𝐷	 ⊆ ℝ! 	→ 	ℝ	are assumed to be sufficiently smooth, i.e. 𝑓, 𝑔, ℎ ∈ 𝒞"(𝐷). 

Theorem 1. The system Σ! is feedback linearizable on an open domain 𝐷# ⊂ 	𝐷 if the following 
conditions hold: 

i) The vectors 𝑔$(𝑥), 𝑖 = 1, 𝑛 form a basis in ℝ! for all 𝑥	 ∈ 	𝐷#;
ii) The distribution generated by the vector fields 𝑔$(𝑥), 𝑖 = 1, 𝑛 − 1 is involutive on 𝐷#.

Definition 1. System Σ! has full relative degree at a point 𝑥% ∈ 𝐷 if: 
i) 𝛻ℎ$(𝑥)𝑔(𝑥) = 0, 𝑖 = 1, 𝑛 − 1, ∀𝑥	 ∈ 𝒱(𝑥%);
ii) 𝛻ℎ&(𝑥%)𝑔(𝑥%) ≠ 0,

where 𝒱(𝑥%) denotes a neighborhood of 𝑥% and functions ℎ$ ∶ 	𝐷 → 	ℝ are recursively defined as: 
ℎ'(𝑥) = ℎ(𝑥), 	ℎ$('(𝑥) = 𝛻ℎ$(𝑥)	𝑓(𝑥), 𝑖 = 1, 𝑛 − 1. 
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The feedback linearization procedure transforms the nonlinear model 𝛴! into an equivalent linear 
representation through a smooth coordinate change and an input redefinition, defined by 

𝑧 = 𝛷(𝑥), 𝑧$ = 𝛷$(𝑥) = 𝛻ℎ$)'(𝑥)𝑓(𝑥), 𝑖 = 1, 𝑛, (2) 
where 𝛷 ∶ 	𝐷 → ℝ! is a diffeomorphism with inverse 𝑥 = 𝛷$)'(𝑧).  
The feedback transformation is expressed as: 𝑣(𝑡) = −𝛼(𝑥)𝛾(𝑥) + 𝛾(𝑥)𝑢(𝑡), where 

𝛾(𝑥) = 𝛻ℎ!)'(𝑥)𝑔(𝑥), 𝛼(𝑥) =
𝛻ℎ!	(𝑥)𝑓(𝑥)
𝛻ℎ!)'(𝑥)𝑔(𝑥)

. (3) 

Under this transformation, system 𝛴! takes the normal form based on the controllable canonical form: 

O𝑧̇
(𝑡) = 𝐴+ 	𝑧(𝑡) + 𝐵+ 	𝑣(𝑡);										
𝑦(𝑡) = 𝐶+ 	𝑧(𝑡).																														

(4) 

Definition 2. A function 𝑏(𝑥) is a control barrier function (CBF) for the system (1) if there exists a 
class-𝒦 function 𝛿 and a safety set 𝒞 = {𝑥 ∈ ℝ! ∣ 𝑏(𝑥) ≥ 0}, 𝑏 ∈ 𝒞'(ℝ!, ℝ), such that 

𝑠𝑢𝑝
,∈𝒰

[𝛻𝑏(𝑥)𝑓(𝑥) + 𝛻𝑏(𝑥)𝑔(𝑥)] ≥ −𝛿,𝑏(𝑥)-, 	 ∀𝑥 ∈ ℝ!, (5) 
and 𝛻𝑏(𝑥) ≠ 0 whenever 𝑏(𝑥) = 0, which guarantees forward invariance of 𝒞 and prevents 
trajectories from leaving the safe set. 
Consider the linearized system in normal form and its autonomous version: 

𝛴: 𝑧̇ = 𝐴̀𝑧 + 𝐵a𝑤 + 𝛻(𝑧), 𝛴aℒ: 𝑧̇ = 𝐴̀𝑧, (6) 
where w denotes an auxiliary compensation input, 𝛻(𝑧) represents the residual nonlinearities, and the 
matrices 𝐴̀ 	≔ 	𝐴+ + 𝐵+𝐾, 𝐵a 	≔ 	𝐵+, are defined such that 𝐴̀ is Hurwitz; its eigenvalues characterize 
the convergence rate of the solutions of the corresponding differential equation toward the 
equilibrium point. Let the quadratic Lyapunov candidate be 

𝑉a(𝑧) = 𝑧0𝑃	𝑧	 > 0, 𝑉ȧ(𝑧) = 𝑧0(𝐴̀0𝑃 + 𝑃𝐴̀)𝑧	 < 0, ∀𝑧 ≠ 0, (7) 
with 𝑃	 = 	𝑃0 	⪰ 0	satisfying the Lyapunov inequality 𝐴̀0𝑃 + 𝑃𝐴̀ ≺ 0. Hence, the equilibrium 
𝑝𝑜𝑖𝑛𝑡	of  𝛴aℒ is exponentially stable.  
Including compensation and residuals gives 

𝑉ȧ(𝑧) = 𝑧0,𝐴̀0𝑃 + 𝑃𝐴̀-𝑧 + 𝑤0𝐵a0𝑃𝑧 + 𝑧0𝑃𝐵a𝑤 + 𝛻0(𝑧)𝑃𝑧 + 𝑧0𝑃𝛻(𝑧). (8) 
To ensure stability and safety, the auxiliary input w is computed by solving the convex optimization:  

𝑚𝑖𝑛 𝑡 	𝑠. 𝑡. p−𝑡 𝑤
𝑤 −𝑡q ≼ 0, (9) 

𝑤𝜑(𝑧) + 𝜓(𝑧) ≤ 0, (10) 
(𝜑w(𝑧)𝑤 + 𝜓w(𝑧)𝛪(𝜓(𝑧)) ≤ 0, (11) 

where 𝛪 ∶ 	ℝ	 → 	ℝ is the indicator function, 𝜑(𝑧) = ,2𝐵a0𝑃-𝑧, 𝜓(𝑧) = (2𝛻0(𝑧)𝑃)𝑧, 𝜑w(𝑧) =
−y8,𝐵a0𝑃𝑧-,𝐵a0𝑃-𝐵az, 𝜓w(𝑧) = − {8,𝐵a0𝑃𝑧-,𝐵a0𝑃- p𝐴̀𝑧 + 𝛻(𝑧)q| − 𝜇 ⋅ 𝑏(𝑧). 
The linear constraint activation condition (11) is introduced for cases in which 𝜑(𝑧) ≈ 0, which may 
lead to an ill-posed optimization. To prevent this, it is required that 𝑧	 ∈ 		𝑘𝑒𝑟,2𝐵a0𝑃-, resulting in 
the following CBF-based safety constraint: : 𝑏(𝑧) = 𝜑(𝑧)1 − 𝜀, 𝑏(𝑧) ≥ 0, 𝜀 > 0, which activates 
only when the state approaches regions where the barrier condition becomes critical. 

3. CONCLUSIONS  
An approximate feedback linearization framework was developed for nonlinear systems with an ill-
defined relative degree. Through a locally defined coordinate transformation, the nonlinear dynamics 
are mapped into an approximate linear representation, while residual terms are compensated by a 
barrier-type auxiliary input formulated via linear matrix inequalities. This structure ensures local 
asymptotic stability and provides control over the convergence rate of the solutions of the 
corresponding differential equation toward the equilibrium point.  
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Probabilistic Analysis of Skip List Search Complexity
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Abstract

Skip lists, introduced by William Pugh in 1990 [1], represent a probabilistic al-
ternative to balanced tree structures such as AVL or Red-Black trees. They achieve
expected logarithmic time complexity for search, insertion, and deletion through
randomized level assignment. This randomness ensures average efficiency without
the structural rigidity or rebalancing overhead of deterministic trees. The present
paper develops an analytical framework for determining the expected runtime com-
plexity T (n) of skip list search operations, based on probabilistic modeling of level
distributions and traversal dynamics.

A skip list is essentially a hierarchy of linked lists layered on top of one another.
The bottom layer contains all the elements in sorted order, while higher levels act
as express lanes that skip over multiple elements, allowing faster traversal. Each
element is assigned a random height that determines how many levels it appears in,
typically following a geometric distribution. Search operations begin at the topmost
level and move forward until the target is surpassed, at which point the algorithm
drops one level and continues. This combination of horizontal and vertical traversal
ensures that, on average, only O(log n) nodes are visited per search. Insertions and
deletions follow a similar pattern, maintaining probabilistic balance without explicit
rotations or restructuring.

The proposed analysis decomposes T (n) into contributions from the top level
and the lower levels, reflecting the skip list’s hierarchical design. The top-level
traversal is modeled as n · p, where p denotes the probability that an element from
the lowest level is also present on the top level. The lower levels are characterized
using conditional probabilities pk, representing the likelihood that an element’s
maximum level equals k given its presence on level k. This probabilistic framework
enables deriving a general formula for the expected execution time, accounting for
arbitrary level distributions rather than restricting to geometric ones.

pk = P
(
the max level of the element is k

∣∣ the element can be found on level k
)

=
P (element is on level k)− P (element is on level k + 1)

P (element is on level k)

∀ k < top level

The derivation leverages concepts from geometric random variables, which model
the number of independent trials until the first success. The skip list’s level assign-
ment mimics a sequence of coin flips, where each “heads” indicates an additional
level. Consequently, the expected number of elements between nodes of consecu-
tive higher levels follows the same probabilistic pattern. This relationship provides
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theoretical justification for the term in the final expression for T (n):

top−1∑
k=1

pk
(1− pk)2

Combining the top level search with the lower levels search, the formula for
T (n) is:

T (n) =
1

2
· (n · ptop +

top−1∑
k=1

pk
(1− pk)2

)

Empirical and theoretical results confirm that for a geometric distribution with

p = 1
2 , the expected runtime approachesO(log n) ( T (n) = 1

2 ·(n·
1
n+

∑log2(n)
k=1

p
(1−p)2

) =

1
2 · (1 +

∑log2(n)
k=1 2) ≈ log2(n)), consistent with classical findings [1, 2]. Moreover,

for degenerate cases such as p = 1, where the structure collapses to a simple linked
list, the model correctly yields a linear behavior O(n) (T (n) = 1

2 · (n · 1 + 0) = n
2 ).

Additional tests examined decaying probabilities, where the likelihood of promo-
tion decreased for higher levels, and the observed results aligned with the expected
complexity. This demonstrates the robustness and generality of the proposed prob-
abilistic decomposition approach.

Skip lists remain a subject of continued research interest due to their simplicity,
cache efficiency, and suitability for concurrent environments [3, 4]. Recent stud-
ies have expanded their application in distributed systems, memory-efficient data
stores, and blockchain indexing [5, 6]. The probabilistic analysis developed in this
paper provides a foundational step toward extending the theoretical understanding
of such variants, including weighted skip lists, dynamic rebalancing models, and
adaptive probability schemes.

In summary, this work refines the mathematical modeling of skip list search
complexity by incorporating conditional probabilities for level distribution. The
derived formula offers a flexible framework for analyzing both classical and non-
geometric skip list configurations, bridging the gap between probabilistic modeling
and empirical performance.
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Abstract 

This paper presents a comparative numerical analysis of several methods for solving the Sylvester and Lyapunov 
equations, which play a fundamental role in stability analysis and control design. The investigated algorithms include 
the Kronecker product formulation and Schur-based approaches combined with orthogonal transformations: Gram-
Schmidt, Householder reflectors and Givens rotations. All methods were implemented in MATLAB and evaluated in terms 
of computational effort, numerical stability and residual error. The results indicate that Gram-Schmidt produces the 
largest residuals, making it less suitable for high-precision applications. The Kronecker formulation yields 
satisfactory results for small-scale matrices but becomes costly as size grows. For medium and large problems, Schur 
decomposition with Householder reflectors provides improved stability and efficiency, while Givens rotations are 
advantageous when operating on sparse or structured matrices. The study clarifies accuracy-cost trade-offs and offers 
practical guidance on selecting appropriate solvers for control-oriented computations. 

Key words: Sylvester equation; Lyapunov equation; numerical methods; MATLAB implementation; Schur decomposition; 
Householder transformation; Givens rotations; stability analysis. 

1. INTRODUCTION
Matrix equations of the Sylvester and Lyapunov type are fundamental in control theory and numerical 
linear algebra. The general Sylvester equation

 −  = 𝐶𝐶 , 
and its particular form, the continuous Lyapunov equation 

𝐴𝐴 𝑃𝑃  +  = −𝑄𝑄 , 
are essential tools for studying the stability of linear time-invariant systems and for designing state 
feedback controllers. Their numerical solution requires efficient and stable algorithms, since the 
conditioning of matrices 𝐴𝐴  and 𝑋𝑋  strongly influences the accuracy of the results. Several 
numerical approaches have been proposed, including the Kronecker product formulation and Schur-
based methods combined with orthogonal transformations such as Gram-Schmidt, Householder and 
Givens. The objective of this paper is to compare these representative algorithms implemented in 
MATLAB and to evaluate their efficiency, precision and numerical robustness. 

2. CONTENT
The Sylvester equation

 −  = 𝐶𝐶 , 
with 𝐴𝐴  ∈ ℂ𝑚𝑚 ×𝑚𝑚 , 𝑋𝑋  ∈ ℂ𝑛𝑛 ×𝑛𝑛 , 𝐶𝐶  ∈ ℂ𝑚𝑚 × , 𝐴𝐴  ∈ ℂ𝑚𝑚 ×𝑛𝑛  can be written in vectorized form 
using the Kronecker product identity 

( ) = (𝑋𝑋 𝑇𝑇 ⨂ 𝐴𝐴 ) (𝐴𝐴 ), 

which yields 

(𝐼𝐼𝑛𝑛⨂ 𝐴𝐴 − 𝐵𝐵𝑇𝑇⨂𝐼𝐼𝑚𝑚) 𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶). (1)
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If the matrix 𝐾𝐾 =  (𝐼𝐼𝑛𝑛⨂ 𝐴𝐴 − 𝐵𝐵𝑇𝑇⨂𝐼𝐼𝑚𝑚) is nonsingular, the unique solution is 𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) =  𝐾𝐾−1 𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶). 

To increase efficiency, both 𝐴𝐴 and 𝐵𝐵 can be transformed into upper triangular matrices via Schur 
decomposition: 

𝐴𝐴 =  𝑄𝑄𝐴𝐴𝑇𝑇𝐴𝐴𝑄𝑄𝐴𝐴𝑇𝑇, 𝐵𝐵 =  𝑄𝑄𝐵𝐵𝑇𝑇𝐵𝐵𝑄𝑄𝐵𝐵𝑇𝑇, 

where 𝑄𝑄𝐴𝐴,𝑄𝑄𝐵𝐵 are orthogonal and 𝑇𝑇𝐴𝐴,𝑇𝑇𝐵𝐵 are upper triangular. 
Substituting these in the Sylvester equation and defining 𝑌𝑌 =  𝑄𝑄𝐴𝐴𝑇𝑇𝑋𝑋𝑄𝑄𝐵𝐵 gives: 

𝑇𝑇𝐴𝐴𝑌𝑌 − 𝑌𝑌𝑇𝑇𝐵𝐵 =  𝑄𝑄𝐴𝐴𝑇𝑇𝐶𝐶𝑄𝑄𝐵𝐵. 

Each element 𝑦𝑦𝑖𝑖𝑖𝑖 of  𝑌𝑌 can then be computed recursively as: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  
(𝑄𝑄𝐴𝐴𝑇𝑇𝐶𝐶𝑄𝑄𝐵𝐵)𝑖𝑖𝑖𝑖 −  ∑ (𝑇𝑇𝐴𝐴)𝑖𝑖𝑖𝑖𝑦𝑦𝑘𝑘𝑘𝑘𝑚𝑚

𝑘𝑘=𝑖𝑖+1 + ∑ 𝑦𝑦𝑖𝑖𝑖𝑖(𝑇𝑇𝐵𝐵)𝑘𝑘𝑘𝑘
𝑗𝑗−1
𝑘𝑘=1

(𝑇𝑇𝐴𝐴)𝑖𝑖𝑖𝑖 −  (𝑇𝑇𝐵𝐵)𝑗𝑗𝑗𝑗
. 

The orthogonal matrices 𝑄𝑄𝐴𝐴,𝑄𝑄𝐵𝐵 are obtained through QR factorization, using one of several 
orthogonalization techniques: 

a) Classical Gram-Schmidt: 

𝑞𝑞𝑘𝑘 =  𝑎𝑎𝑘𝑘 −  � �𝑞𝑞𝑗𝑗𝑇𝑇𝑎𝑎𝑘𝑘�
𝑘𝑘−1

𝑗𝑗=1
𝑞𝑞𝑗𝑗, 𝑞𝑞𝑘𝑘 ≔

𝑞𝑞𝑘𝑘
‖𝑞𝑞𝑘𝑘‖

. 

b) Householder Reflectors: 

𝐻𝐻 = 𝐼𝐼 − 2 
𝑣𝑣 𝑣𝑣𝑇𝑇

𝑣𝑣𝑇𝑇𝑣𝑣
, 𝑣𝑣 = 𝑥𝑥 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥1) ‖𝑥𝑥‖ 𝑒𝑒1. 

c) Givens Rotations: 

𝐺𝐺(𝑖𝑖, 𝑗𝑗, 𝜃𝜃) =  � cos 𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos 𝜃𝜃� , cos𝜃𝜃 =  

𝑎𝑎𝑖𝑖𝑖𝑖

�𝑎𝑎𝑖𝑖𝑖𝑖2 +  𝑎𝑎𝑗𝑗𝑗𝑗2
, sin𝜃𝜃 =  

−𝑎𝑎𝑗𝑗𝑗𝑗

�𝑎𝑎𝑖𝑖𝑖𝑖2 +  𝑎𝑎𝑗𝑗𝑗𝑗2
, 

𝐴𝐴′ =  𝐺𝐺𝑇𝑇 ∙ 𝐴𝐴, 𝑎𝑎𝑖𝑖𝑖𝑖′ = 0. 

A particular case of (1) is the continuous-time Lyapunov equation: 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 =  −𝑄𝑄, 
which can be solved using the same Schur-based framework, by setting 𝐴𝐴 = 𝐴𝐴𝑇𝑇 ,𝐵𝐵 = −𝐴𝐴,𝐶𝐶 = −𝑄𝑄. 
The uniqueness of the solution to the Sylvester equation is guaranteed if 

𝜆𝜆𝑖𝑖(𝐴𝐴) −  𝜆𝜆𝑗𝑗(𝐵𝐵) ≠ 0, ∀𝑖𝑖, 𝑗𝑗. 

The numerical accuracy of each method can be evaluated by the Frobenius norm of the residual: 

𝑟𝑟 = ‖𝐴𝐴𝐴𝐴 − 𝑋𝑋𝑋𝑋 − 𝐶𝐶‖𝐹𝐹 . 
 

3. CONCLUSIONS 
The comparative analysis of several numerical methods for solving the Sylvester and Lyapunov 
matrix equations revealed clear differences in precision and computational effort. The Schur 
decomposition combined with Householder transformations proved to be the most stable and efficient 
for larger matrices. The Kronecker formulation remains adequate for small systems, while the Gram-
Schmidt method is more affected by round-off errors. Givens rotations offer a balanced compromise 
between accuracy and cost. The results emphasize that the solver choice should depend on matrix 
size and conditioning to ensure reliable computations in control applications. 
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Abstract 

Using collections of meteorological data as a starting point, this paper aims to analyse and compare variations of 
temperature across settlements in the climate zones of Bucharest and Karlsruhe, respectively. The study expands upon 
the methods of R. di Francesco by refining mathematical formulations and extending the range of datasets and 
applications. Employing matrices of intervals, we investigate annual temperature variations to identify trends that can 
support decision-making in engineering, travel, and industrial contexts. The mathematical framework focuses on 
expanding matrix multiplication principles to better represent geographical and climatic dependencies by making use of 
the Jaccard Similarity Index. The results demonstrate potential benefits in optimizing material selection, mechanical 
behaviour, and electrical performance under varying thermal conditions. Overall, geographically oriented matrices of 
sets represent a promising field of research within pseudomatrix technologies viable for practical implementations. 

Key words: Pseudomatrix technologies, Matrices of intervals, Climate zones, Jaccard Similarity Index 

1. INTRODUCTION
Using collections of data, it is often useful to analyze, compare, and predict temperature conditions
in the field of engineering, whether they stem from the environment or from the application itself.
This paper aims to build upon our previous study on the methods proposed by R. Di Francesco by
expanding the mathematical base and applicability.

2. CONTENT
Applying matrices of sets, specifically intervals, and proceeding with matrix calculations adapted to
this datatype, temporal and spatial variations in temperature are mapped out to optimize engineering
solutions, travel considerations and more. Mathematically, our scope is refining and expanding the
basis of matrix computation. Aspects such as material choice in construction and machine
components in 3D can be greatly influenced by temperature, such as in the case of thermal expansion
and elastic behaviour.
Using the Jaccard similarity Index, comparative relationships between temperature interval matrices
can be instated, and different operational parameters may be accounted for, operating locations may
be considered and failure may be prevented. The concepts are to be exemplified using two sets of
meteorological data, representing the areas of southern Romania around the Bucharest region and
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southwestern Germany respectively, around the Karlsruhe district and the Black Forest region, as 
well as several nearby key cities.                                                                                                                                                                                                                              

 
 

 
(1) Bucharest Region 

 

 
(2) Karlsruhe Region 

 
The Jaccard Similarity Index is mathematically defined as the ratio between the length of the common 

temperature interval and the length of the total temperature interval: 
 

J(T(i_1, j),T(i_2, j)) = 
|்(௜భ,௝)⋂்(௜మ,௝)|

|்(௜భ,௝)∪்(௜మ,௝)|
        (5) 

 
The Jaccard Index for 4 cities in the Bucharest region during June 2024 will now be computed 

and organized within a table: 
 

 
(3) Jaccard Index of cities in the Bucharest region 

 
Subsequently, the same is to be done for 4 cities in the Karlsruhe region: 
 

 
(4) Jaccard Index of cities in the Karlsruhe region 
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Thus, a useful comparison between the cities can be made. 
 
 
3. CONCLUSIONS  
 
Matrices of sets constitute a field of study which holds promising possibilities for improvement and 
expansion, being a subject which allows for the development of practical solutions across the board, 
in a multitude of fields, and taking into account various parameters. 
This communication represents only a partial selection of the material presented, as the full 
development and detailed explanations are provided in the reference article. 
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INTEGRATING DIGITAL MATHEMATICS AND 
ARTIFICIAL INTELLIGENCE IN MODERN DEFENCE 

EDUCATION 

Andrada-Livia CIRNEANU1, *, Cristian-Emil MOLDOVEANU1, Alin-Constantin 
SAVA1, Linko NIKOLOV2, Nikolaos KARADIMAS3, Giulia BOETTI4, Bartosz 

KOZICKI6 

This paper presents a set of innovative, mathematics-driven learning scenarios 
developed within the Erasmus+ project Digital Mathematics Applied in Defence and 
Security Education (DIMAS). The scenarios integrate advanced mathematical 
concepts with artificial intelligence (AI) and data science techniques to enhance 
problem-based learning in military higher education. Three representative case 
studies are detailed: (1) neural network modelling for intelligence data analysis, (2) 
geospatial clustering for meteorological intelligence using DBSCAN, and (3) image 
classification for automated facility inspection through machine learning. Each 
scenario connects abstract mathematical theories—linear algebra, calculus, and 
statistics—to real-world defence challenges, fostering computational literacy, 
operational reasoning, and ethical reflection. The findings demonstrate that digital 
mathematics can effectively serve as a pedagogical bridge between STEM disciplines 
and applied defence education, contributing to the modernization of military 
curricula. Students achieved a 20% improvement in algorithmic accuracy 
understanding.  

Keywords: Digital mathematics, military education, neural networks, 
DBSCAN, machine learning, project-based learning, defence technology. 

1. Introduction

The rapid evolution of artificial intelligence (AI) has transformed multiple 
scientific and operational domains, including defense, intelligence, and security 
systems. In contemporary higher education, especially in military and defense 
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institutions, mathematics serves not only as a theoretical foundation but as an 
applied tool for computational modelling, simulation, and intelligent decision-
making. 

The Digital Mathematics Applied in Defence and Security Education 
(DIMAS) project [1] was initiated to enhance the role of mathematics in developing 
practical, AI-oriented skills among students in defense and security programs. 
Through scenario-based learning, students engage in real-world problem solving, 
bridging theoretical mathematics with modern computational tools. 

Recent research highlights that the integration of artificial intelligence into 
STEM education significantly enhances learners’ analytical skills, computational 
reasoning, and conceptual understanding. AI-enhanced learning environments—
such as intelligent tutoring systems, automated assessment tools, and interactive 
simulations—have been shown to improve student engagement and problem-
solving performance across mathematics, engineering, and computer science 
disciplines [1]. Moreover, several studies emphasize the importance of 
computational thinking and algorithmic literacy as foundational competencies for 
modern STEM curricula, advocating for closer alignment between mathematical 
theory and AI-driven analytical practices [2]. In parallel, the emerging concept of 
digital mathematics proposes a pedagogical framework in which mathematical 
reasoning, coding, data visualization, and algorithmic modelling are integrated [3]. 
This approach is particularly relevant in defence education, where digital 
transformation initiatives have accelerated the adoption of data-driven decision-
support systems, simulation-based training, and autonomous technologies [4]. 
Within this context, project-based learning (PBL) has proven especially effective, 
as it immerses students in realistic analytical workflows that mirror operational 
defence challenges—such as signal interpretation, geospatial analysis, and 
automated monitoring. By combining computational tools with applied 
mathematical modelling, PBL-oriented digital mathematics environments foster 
both technical competence and mission-oriented problem-solving skills. 

This paper synthesizes three representative DIMAS scenarios that 
demonstrate how applied mathematics supports AI development for defense 
applications. 

2. Mathematical and Computational Framework

2.1 Mathematical Foundations 
Modern artificial intelligence models are grounded in well-established 

mathematical fields that provide their theoretical and computational structure. 
Linear algebra forms the backbone of neural computation, enabling operations such 
as matrix multiplication, vector projection, and eigenvalue decomposition, all of 
which govern transformations in neural network layers [5]. Calculus, particularly 
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differential calculus and the chain rule, underpins gradient-based optimization 
methods such as stochastic gradient descent and backpropagation, allowing models 
to iteratively minimize loss functions and improve predictive accuracy [6]. 
Probability theory and statistics contribute to model evaluation, uncertainty 
estimation, and performance metrics such as accuracy, precision, and recall, serving 
as quantitative tools for assessing reliability and robustness in learned 
representations [7]. 

2.2 Computational Tools 
All computational experiments were implemented in Python using widely 

adopted scientific libraries to ensure transparency and reproducibility. 
TensorFlow/Keras was used for designing and training neural networks, while 
Scikit-learn supported clustering and classical machine-learning models. Data 
visualization relied on Matplotlib and Basemap for geospatial mapping. To support 
reproducible experimentation—a key requirement in educational and scientific 
environments—datasets were used with fixed random seeds, clearly specified 
sample sizes, and identical preprocessing steps across runs. These reproducibility 
practices ensure that results can be consistently replicated by students and 
instructors in defence-oriented laboratory settings. 

For clarity and reproducibility of the computational workflow, Table 1 
presents the specific software tools and library versions employed throughout the 
experiments. 

Table 1 
Tool / Library Version Purpose 

Python 3.10 Main programming environment 
TensorFlow / Keras 2.12 Neural network modelling 
Scikit-learn 1.3 Clustering and classical ML 
Matplotlib 3.7 Data visualization 
Basemap 1.3 Geospatial mapping 

The DIMAS scenarios demonstrate how mathematical theory and 
computational practice work together to support defence-oriented digital 
applications. Core mathematical areas—linear algebra, calculus, statistics, 
probability, and numerical methods—form the foundation for understanding neural 
networks, clustering, and classification, enabling students to analyze, optimize, and 
validate AI models. Through hands-on projects, students apply these principles to 
realistic defence tasks: neural network–based intelligence analysis, DBSCAN 
meteorological clustering for mission planning, and image classification for facility 
monitoring. These activities strengthen their understanding of weights, biases, 
optimization, and feature extraction while developing practical skills in tools like 
TensorFlow and Scikit-learn. Students also improve their critical thinking through 
parameter tuning, visualization, and model interpretation, and gain ethical 
awareness regarding fairness and privacy in AI systems. Overall, the DIMAS 
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approach enhances both technical competence and reflective judgement by 
embedding mathematics within authentic defence applications.  

3. Methodology
3.1 Educational and Experimental Design
The educational and experimental design of this study was grounded in a

project-based learning (PBL) methodology, selected for its proven effectiveness in 
developing deep conceptual understanding and transferable problem-solving skills. 
Unlike traditional lecture-based instruction which often emphasizes passive 
knowledge acquisition PBL engages students in authentic, open-ended tasks that 
mirror real analytical challenges in defence and security environments. Prior 
research has shown that PBL enhances motivation, promotes long-term knowledge 
retention, and strengthens learners’ ability to apply theoretical principles in 
practical contexts [8]. Moreover, PBL aligns closely with computational 
disciplines, where iterative experimentation, modelling, and evaluation form 
essential components of the learning cycle [9]. In this study, PBL was 
operationalized by structuring each scenario as a complete analytical workflow, 
including dataset exploration, preprocessing, model design, parameter tuning, and 
results interpretation. This approach encouraged students to connect mathematical 
theory to computational practice while developing autonomy in tool use, critical 
reasoning, and decision-making. By situating mathematical learning within 
defence-aligned digital applications, the methodology reflects the operational 
realities of modern defence analytics and enhances the pedagogical relevance of 
AI-driven problem solving. 

3.2 Scenario 1: Neural Networks for Intelligence Data 
In Scenario 1, students trained a convolutional neural network (CNN) using 

the MNIST dataset as a proxy for intelligence signal classification. The 
mathematical model of the CNN is based on compositions of affine transformations 
and nonlinear activation functions. For an input tensor 𝐴𝐴0 = 𝑋𝑋, each layer l 
computes: 

𝑍𝑍[𝑙𝑙] = 𝑊𝑊[𝑙𝑙]𝐴𝐴[𝑙𝑙−1] + 𝑏𝑏[𝑙𝑙] (1) 

𝐴𝐴[𝑙𝑙] = 𝑔𝑔[𝑙𝑙](𝑍𝑍[𝑙𝑙]) (2) 

where W[l] and b[l] denote the weight matrix and bias vector, and g[l] is an element-
wise activation such as ReLU. Training the network aims to minimize the empirical 
loss function. 

ℒ(𝑊𝑊, 𝑏𝑏) =
1
𝑚𝑚
�𝑙𝑙(𝑦𝑦�(𝑖𝑖),𝑦𝑦(𝑖𝑖))
𝑚𝑚

𝑖𝑖=1

 (3) 

 Typically categorical cross-entropy. Gradient descent updates approximate the 
continuous-time gradient flow ODE: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − ∨�𝜃𝜃 ℒ(𝜃𝜃) (4) 

With 𝜃𝜃 = (𝑊𝑊, 𝑏𝑏) discretized as 
𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛼𝛼 ∨𝜃𝜃���� ℒ(𝜃𝜃𝑘𝑘) (5) 

Where α is the learning rate. Backpropagation computes gradients using the 
chain rule: 

𝜎𝜎[𝐿𝐿] =∨�𝐴𝐴[𝐿𝐿] 𝑙𝑙 ∘ 𝑔𝑔[𝐿𝐿]′(𝑍𝑍[𝐿𝐿]) (6) 
𝜎𝜎[𝑙𝑙] = (𝑊𝑊[𝑙𝑙+1])⊺𝜎𝜎[𝑙𝑙+1] ∘ 𝑔𝑔[𝑙𝑙]′(𝑍𝑍[𝑙𝑙]) (7) 

With gradient updates: 
𝑑𝑑𝑊𝑊[𝑙𝑙] = 𝜎𝜎[𝑙𝑙](𝐴𝐴[𝑙𝑙−1])⊺,𝑑𝑑𝑏𝑏[𝑙𝑙] = �𝜎𝜎[𝑙𝑙] (8) 

This mathematical framework enables students to interpret neural networks 
not merely as computational tools, but as discretized dynamical systems governed 
by differential equations. 

A convolutional neural network (CNN) was designed as it is presented in 
Figure 1. The input to the network consists of 28 × 28 grayscale images, normalized 
to the [0, 1] range. The first convolutional block includes a 2D convolutional layer 
with 32 filters of size 3 × 3 and ReLU activation, followed by a 2 × 2 max-pooling 
layer. The second block uses 64 filters of size 3 × 3 with ReLU activation, also 
followed by 2 × 2 max-pooling. The feature maps are then flattened and passed to 
a fully connected layer with 128 neurons and ReLU activation. To reduce 
overfitting, a dropout layer with a rate of 0.5 is applied. The output layer consists 
of 10 neurons with Softmax activation to produce the class probabilities for the 
digits 0-9. The network was trained using the Adam optimizer and categorical 
cross-entropy loss. The model was evaluated on the MNIST test set and achieved a 
classification accuracy of approximately 97.6%, demonstrating effective pattern 
recognition capacity. Consider a neural network layer l with W[l] weight matrix, b[l] 
bias vector, A[l] activation output of layer l, A[0] =X input data, the linear step would 
be: 

Fig. 1. Neural network architecture 
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The MNIST dataset used in this scenario contains 70,000 grayscale images 
(60,000 for training and 10,000 for testing), each sized 28×28 pixels and sourced 
from the official MNIST benchmark. Model performance was evaluated using 
classification accuracy, loss curves, and a confusion matrix to analyze class-specific 
errors and convergence behaviour. 

3.3 Scenario 2: Meteorological Clustering with DBSCAN 
Scenario 2 focuses on identifying spatial patterns in meteorological data 

using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm. DBSCAN operates on a metric space (X, d) where observations represent 
meteorological stations and the distance metric is Euclidean. 

For the mathematical modelling,  𝜖𝜖 > 0 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℕ, the neighbourhood 
is computed as: 

𝐵𝐵𝜀𝜀(𝑥𝑥) = {𝑦𝑦𝑦𝑦𝑦𝑦|𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤ 𝜀𝜀} (9) 
And the core point: 

𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⇔  |𝐵𝐵𝜀𝜀(𝑥𝑥)|≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (10) 
 The direct density-reachability is verify based on the fact that a point y is directly 
density-reachable from a core point x if: 

𝑦𝑦𝑦𝑦𝐵𝐵𝜀𝜀(𝑥𝑥) (11) 
And the density-reachability is consider to be a sequence 𝑥𝑥 = 𝑥𝑥0, 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛 = 𝑦𝑦 
exists where each 𝑥𝑥𝑖𝑖+1 is directly density-reachable from 𝑥𝑥𝑖𝑖. Then, two points x and 
y are density-connected if there exists z such that both are density-reachable from 
z. For the clustering outcome a cluster is defined as a maximal set of density-
connected points. Points not density-reachable from any core point are labelled as
noise. This formalization provides a mathematically rigorous foundation for
students’ analysis of meteorological structures and anomaly detection

The algorithm’s neighbourhood radius and minimum points per cluster were 
tuned experimentally. The results visualized distinct climatic zones and highlighted 
anomalous stations possibly affected by equipment malfunction or extreme 
weather. 

Fig. 2. Geographic cluster results visualization map 
The meteorological dataset consisted of 1,100 geolocated station records from 
northern Canada, including temperature, humidity, and pressure values obtained 
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from publicly available climate archives. Cluster quality was assessed using 
Silhouette scores, cluster density analysis, and the proportion of noise points, 
providing insight into cluster separability and parameter sensitivity. 

3.4 Scenario 3: Image Classification of Clean and Messy Rooms 
The third scenario applied machine learning to a binary image classification 

problem simulating automated facility monitoring. Images of “clean” and “messy” 
rooms were pre-processed and converted to grayscale. Feature extraction was based 
on: 

• Mean and variance of pixel intensities
• Grayscale histograms representing texture distribution.

Two models were trained:
• Logistic Regression for probabilistic classification and for this, students

used
𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) = 𝜎𝜎(𝜔𝜔⊺𝑥𝑥 + 𝑏𝑏) (12)

Where 𝜎𝜎(𝑧𝑧) is the logistic function, calculated as in (13)

𝜎𝜎(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
(13) 

The model parameters minimize the negative log-likelihood: 

ℒ(𝜔𝜔, 𝑏𝑏) = −�[𝑦𝑦𝑖𝑖 log 𝜎𝜎(𝑧𝑧𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝜎𝜎(𝑧𝑧𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

 (14) 

• Support Vector Machine (SVM) for margin-based separation
For binary labels 𝑦𝑦𝑖𝑖𝜖𝜖{−1, +1}, the prima SVM problem is the convex

optimization, computed as in (15): 

min
𝜔𝜔,𝑏𝑏,𝜉𝜉

1
2
‖𝜔𝜔‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (15) 

Subject to 
𝑦𝑦𝑖𝑖(𝜔𝜔⊺𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 (16) 

Its dual formulation is: 

max
𝛼𝛼

[�𝛼𝛼𝑖𝑖 −
1
2

𝑁𝑁

𝑖𝑖=1

� 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)] (17) 

Subject to 

0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶,�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑁𝑁

𝑖𝑖=1

 (18) 

With a linear kernel 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = 𝑥𝑥𝑖𝑖⊺𝑥𝑥𝑗𝑗 the classifier evaluates 
𝑦𝑦� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔⊺𝑥𝑥 + 𝑏𝑏) (19) 

This statistical modelling framework introduces students to convex 
optimization, maximum-likelihood estimation, and linear decision boundaries. 
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Both models achieved satisfactory accuracy on test images, validating the 
effectiveness of low-dimensional statistical features in visual classification tasks. 

The binary classification task was implemented using a dataset of 1,200 
labelled images (600 “clean” and 600 “messy”), collected from publicly available 
room-classification datasets and manually curated for consistency. Model 
performance was evaluated using accuracy, precision–recall metrics, and a 
confusion matrix to quantify misclassification rates and compare the effectiveness 
of logistic regression versus SVM classifiers. 

4. Results and Discussion
4.1 Quantitative Evaluation
As it is presented in Table 2, the neural network achieved strong

performance on MNIST with 97.6% accuracy and stable training behavior, though 
its scalability depends on larger datasets and higher computational resources. 
DBSCAN produced 5–7 meaningful meteorological clusters and proved effective 
at detecting outliers, but its results remain sensitive to parameter choices and dataset 
size. SVM and logistic regression models exceeded 90% accuracy in image 
classification, offering good class separation; however, their scalability varies, with 
SVMs being computationally intensive on large datasets and logistic regression 
limited in handling non-linear patterns. 

Table 2 
Model Application Result Key Metrics 

Neural Network MNIST 
Classification 97.6% accuracy Low error rate; stable 

convergence 

DBSCAN Meteorological 
Clustering 5–7 clusters Effective outlier detection 

SVM / Logistic 
Regression 

Image 
Classification >90% accuracy Good class separation 

To deepen the quantitative validity of the results, additional evaluation 
metrics were computed across the three DIMAS scenarios. For the neural network 
model, five independent training runs were performed using different random seeds 
to assess robustness. The model achieved an average accuracy of 97.6% ± 0.15%, 
indicating stable convergence and low sensitivity to initialization. Training the 
CNN required approximately 18–22 seconds per epoch on a standard GPU-enabled 
workstation, with total training time averaging three minutes. These findings 
confirm that the architecture is computationally efficient for educational 
environments while exhibiting consistently high performance. 

For the meteorological clustering task, DBSCAN performance was 
examined using cluster validity measures. A Silhouette coefficient of 0.41 indicated 
moderate cluster separability across the 5–7 clusters typically identified. 
Additionally, the noise ratio (percentage of points labelled as outliers) ranged from 
8% to 12%, reflecting DBSCAN’s robustness in isolating anomalous 
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meteorological stations. Cluster density variation remained low, demonstrating 
stable behaviour across different ε–minPts parameter pairs. 

In the image classification scenario, both the Logistic Regression and SVM 
models were evaluated using class-specific precision, recall, and F1-score. The 
SVM achieved an F1-score of 0.92 for “clean” rooms and 0.89 for “messy” rooms, 
while Logistic Regression achieved 0.88 and 0.85, respectively. Precision and recall 
values followed similar patterns, confirming that both algorithms performed 
reliably on grayscale statistical features, with SVM showing slightly superior 
discrimination capabilities. These additional metrics complement the accuracy 
results reported in Table 1 and provide a more detailed understanding of each 
model’s strengths and limitations. 

Across all evaluated methods, each model demonstrated solid performance 
within its respective application domain (Table 3).  

Table 3 
Model / Scenario Additional Metrics Value 

Neural Network (MNIST) 
Accuracy (mean ± SD, 5 runs) 97.6% ± 0.15% 
Training time 18–22 s/epoch 
Total training duration ~3 min 

DBSCAN (Meteorological 
Clustering) 

Silhouette coefficient 0.41 
Noise ratio 8–12% 
Cluster count stability 5–7 clusters 

Logistic Regression F1-score (clean / messy) 0.88 / 0.85 
SVM F1-score (clean / messy) 0.92 / 0.89 

The neural network achieved high accuracy and stable convergence on 
MNIST, though its dependence on larger datasets and computational resources 
limits scalability. DBSCAN effectively identified meaningful meteorological 
clusters and detected outliers, but its sensitivity to parameter selection may affect 
consistency. Both SVM and logistic regression surpassed 90% accuracy in image 
classification, providing reliable class separation, yet they face scalability 
constraints—SVMs due to computational cost and logistic regression due to limited 
ability to model non-linear relationships. Overall, the results highlight the strengths 
of each technique while underscoring the importance of dataset size, parameter 
tuning, and computational demands when selecting an appropriate model. 

4.2 Educational and Mathematical Insights 
The three DIMAS scenarios demonstrated not only solid technical results 

but also significant educational gains. Students showed clear improvement in 
connecting mathematical concepts—such as gradient descent, distance metrics, and 
statistical distributions—to the actual behaviour of AI models. Through hands-on 
experimentation, they learned how hyperparameters influence neural network 
convergence, how DBSCAN parameters reshape cluster structures, and how 
confusion matrices reveal misclassification patterns in SVM and Logistic 
Regression. These activities strengthened their ability to interpret model outputs, 
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diagnose errors, and understand the mathematical reasoning behind algorithmic 
decisions rather than treating models as black boxes. Overall, students developed 
higher levels of conceptual understanding, algorithmic literacy, and ethical 
awareness, as illustrated in Figure 3. 

Fig. 3. Students’ learning progression 
The results in Figure 3 indicate a steady improvement in students’ 

competencies as they progressed through increasingly complex analytical tasks. 
Initial engagement with neural networks produced moderate gains, while the 
DBSCAN scenario led to stronger improvements as students explored parameter 
sensitivity and geospatial clustering. The greatest advancement occurred in the final 
classification scenario, where working with misclassified images and fairness 
considerations strengthened both algorithmic understanding and ethical awareness. 
Overall, the findings demonstrate that the DIMAS approach effectively develops 
mathematical, computational, and reflective skills. Students not only deepened their 
theoretical and technical proficiency but also gained insight into critical issues such 
as data bias, privacy, and the importance of explainable AI in defence applications. 
This combination of technical competence and ethical reflection underscores the 
holistic value of digital mathematics in modern defence education. 

5. Educational and Operational Impact
5.1 Pedagogical Perspective
Digital Mathematics represents a significant departure from traditional

mathematics curricula, which often focus on abstract theory, symbolic 
manipulation, and isolated problem sets. While classical approaches prioritize 
deductive reasoning, they frequently leave students without a clear understanding 
of how mathematical principles operate within real computational systems. In 
contrast, the Digital Mathematics approach used in the DIMAS project integrates 
mathematical reasoning with visualization tools, programming practices, and 
artificial intelligence techniques. This creates a tightly connected learning 
environment where students simultaneously explore mathematical theory and its 
algorithmic expression. By working directly with neural networks, clustering 
models, and classification algorithms, students develop operational intuition—
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understanding not only how mathematical formulas are derived but how they 
behave in practical defence-oriented tasks. The unique contribution of DIMAS lies 
in this synthesis: mathematics is taught not as a separate theoretical discipline but 
as an active, digital, and computational tool deeply embedded in modern defence 
analytics. 

5.2 Operational Relevance 
The methodologies explored in the DIMAS scenarios—neural networks for 

pattern detection, DBSCAN for anomaly identification, and machine-learning 
classifiers for automated monitoring—align closely with current operational needs 
in the defence and security sectors. Modern defence organizations increasingly rely 
on data-driven decision-making pipelines, such as Intelligence, Surveillance, and 
Reconnaissance (ISR) systems, where rapid detection of patterns, anomalies, and 
threats is essential for maintaining situational awareness. Neural network–based 
classification parallels real signal and image processing workflows used in cyber 
defence and electronic intelligence. Density-based clustering supports 
environmental and geospatial intelligence tasks, informing mission planning and 
hazard detection. Similarly, automated facility monitoring and logistics inspection 
reflect the growing trend toward predictive maintenance and infrastructure 
optimization in defence operations. These applications correspond to broader 
international initiatives, including NATO’s digital transformation framework, 
which highlights AI-enabled decision support, real-time data fusion, and 
autonomous system readiness as strategic priorities [10]. Studies on defence 
analytics and machine learning have also emphasized the importance of anomaly 
detection, predictive modelling, and automated classification in enhancing 
operational efficiency and reducing human workload in complex data environments 
[11]. By exposing students to these techniques through hands-on, mathematically 
grounded scenarios, the DIMAS framework equips future defence professionals 
with the analytical competencies required to operate within technologically 
advanced, data-centric defence ecosystems. 

6. Conclusions
This paper has presented a comprehensive integration of mathematics,

artificial intelligence, and defense education within the framework of the DIMAS 
project. The described scenarios demonstrate how applied mathematics forms the 
foundation of computational reasoning across neural computation, clustering, and 
classification techniques. By embedding mathematical principles into digital 
experimentation, the DIMAS framework bridges theoretical understanding and 
algorithmic implementation, showcasing how mathematical modelling drives 
problem-solving and decision-making in technologically advanced defense 
contexts. The findings confirm that the synergistic combination of mathematical 
modelling and computational experimentation cultivates critical thinking, 
creativity, and innovation within defense-oriented learning environments. This 
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interdisciplinary approach not only enhances technical competence but also 
prepares learners to address complex challenges in AI-driven defense systems. 
Future research directions will explore adaptive assessment models tailored to 
digital learning, the integration of explainable AI (XAI) techniques to improve 
transparency in algorithmic reasoning, and cross-institutional collaborations aimed 
at developing a robust, globally relevant digital mathematics curriculum for defense 
education. Future extensions of DIMAS will explore hybrid AI–mathematics 
laboratories. 
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Abstract

In this paper we consider the class of starlike functions of order α, f analytic in the open
unit disk, normalized by f(0) = 0 and f ′(0) = 1. The aim of the paper is to investigate
the third-order Hankel determinant H3(1) for this class of functions and obtain an upper
bound for the determinant H3(1). Our results extend and complete the recent contributions
of Breaz, Cătaş and Cotîrlă concerning subclasses of analytic functions associated with the
exponential function.

1 Introduction
Let A be the class of analytic functions of the form

f(z) = z +
∞∑

n=2
anzn, (1)

in the open unit disk ∆ = {z ∈ C : |z| < 1}, normalized by f(0) = 0 and f ′(0) = 1. We denote
by S the subclass of A consisting of univalent functions f in ∆.

The classical coefficient conjecture for functions f ∈ S of the form (1) was first stated by
Bieberbach [1] in 1916 and proved by de Branges [2] in 1985. During the period 1916–1985, many
mathematicians attempted to prove or disprove this conjecture. As a result, several subclasses of
S have been introduced. Among these, the class of starlike functions of order α plays a central
role, being defined by

S∗(α) =
{

f ∈ S : ℜ
(

zf ′(z)
f(z)

)
> α, z ∈ ∆, 0 ≤ α < 1

}
. (2)

Here, the symbol “ℜ” denotes the real part of a complex number. The concept of differential
subordination is central in the study of these classes.

Suppose that f and g are two analytic functions in ∆. We say that f is subordinate to g
and write f(z) ≺ g(z) if there exists a Schwarz function w analytic in ∆, with w(0) = 0 and
|w(z)| < 1, such that (see [5])

f(z) = g(w(z)). (3)

Thus, f(z) ≺ g(z) implies f(∆) ⊂ g(∆). If f is univalent in ∆, then f is subordinate to g if and
only if f(0) = g(0) and f(∆) ⊂ g(∆).

We also recall the class P of analytic functions p, normalized by

p(z) = 1 + c1z + c2z2 + · · · , (4)
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and satisfying ℜp(z) > 0, z ∈ ∆. It is easy to see that if p ∈ P, then there exists a Schwarz
function w analytic in ∆, with w(0) = 0 and |w(z)| < 1, such that (see [4])

p(z) = 1 + w(z)
1 − w(z) . (5)

In 1992, Ma and Minda [8] introduced the unified framework

S∗(φ) =
{

f ∈ A : zf ′(z)
f(z) ≺ φ(z), z ∈ ∆

}
, (6)

C(φ) =
{

f ∈ A : 1 + zf ′′(z)
f ′(z) ≺ φ(z), z ∈ ∆

}
, (7)

where φ is analytic in ∆, ℜφ(z) > 0, φ(0) = 1, φ′(0) > 0, and the image domain φ(∆) is
symmetric with respect to the real axis and starlike with respect to 1.

The classes S∗(φ) and C(φ) unify various subclasses of starlike and convex functions in ∆.
An important example is obtained by choosing

φ(z) = 1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1. (8)

In this case, we obtain the Janowski starlike class S∗[A, B] [7]. Further, for the choice A = 1−2α
and B = −1, with 0 ≤ α < 1, we obtain the subclass of starlike functions of order α:

S∗(α) =
{

f ∈ S : ℜ
(

zf ′(z)
f(z)

)
> α, z ∈ ∆

}
. (9)

This will be the central class considered in the present work. In [9], Noonan and Thomas studied
the Hankel determinants Hq(n) of order q for functions f ∈ A of the form (1), for q ≥ 1 and
n ≥ 1, defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

... . . . ...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣
, (a1 = 1). (10)

In particular,

H3(1) =

∣∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣∣ , (a1 = 1). (11)

Since f ∈ S, a1 = 1, it follows that

H3(1) = a3 (a2a4 − a2
3) − a4 (a4 − a2a3) + a5 (a3 − a2

2). (12)

The concept of the Hankel determinant is very useful in singularity theory [11] and in the
study of power series with integer coefficients. The Hankel determinants Hq(n) have been
investigated by several authors to study their rate of growth as n → ∞ and to determine the
upper bound for certain values of q and n. For example, Pommerenke [12] proved that the
Hankel determinants of univalent functions satisfy

|Hq(n)| < k n−( 1
2 +β)q+ 3

2 , (n = 1, 2, . . . ; q = 2, 3, . . . ), (13)

where β > 1/1400 and k depends only on q. Note that the Hankel determinant H2(1) = a3 − a2
2

is related to the well-known Fekete–Szegő functional [10] for univalent functions. Although many
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upper bounds for H2(2) are known and some less sharp ones for H3(1) have been obtained for
corresponding subclasses of S, the results for the entire class S are not known. Moreover, not
even a reasonable conjecture can yet be formulated.

Ehrenborg studied the Hankel determinants of exponential polynomials [13], and Noor
investigated the Hankel determinants for Bazilevič functions [14], as well as for functions with
bounded boundary rotation [15, 16] and for close-to-convex functions [17].

So far, very few researchers have studied these determinants for subclasses of S defined
by differential subordination. In this paper, we aim to investigate the third-order Hankel
determinant H3(1) for the class of starlike functions of order α, and to obtain the upper bound
for this determinant. To derive the results, we will need the following preliminaries.

2 Preliminary Results
We now list a few preliminary results needed in the next section. Recall that for f ∈ S∗(α) we
can write

zf ′(z)
f(z) = α + (1 − α) p(z), (14)

where p ∈ P is of the form

p(z) = 1 + c1z + c2z2 + c3z3 + · · · , (15)

with ℜp(z) > 0, z ∈ ∆. Thus, coefficient estimates for cn of functions in P will be useful
throughout this work.
Lemma 1 ([18]). If p ∈ P and is of the form above, then

|cn| ≤ 2, n = 1, 2, . . . , (16)

and the inequality is sharp.
Lemma 2 ([20], [19]). If p ∈ P and is of the form above, then

|cn+k − µcnck| < 2, 0 ≤ µ ≤ 1, (17)
|cmcn − ckcl| ≤ 4, m + n = k + l, (18)∣∣cn+2k − µcnc2

k

∣∣ ≤ 2(1 + 2µ), µ < −1
2 , (19)∣∣∣∣∣c2 − c2

1
2

∣∣∣∣∣ < 2 − |c1|2

2 , (20)

and for a complex number λ,

|c2 − λc2
1| ≤ 2 max{1, |2λ − 1|}. (21)

Lemma 3 ([20], [19]). If p ∈ P is given as above, then there exist complex numbers x, z with
|x| ≤ 1, |z| ≤ 1 such that

2c2 = c2
1 + x(4 − c2

1), (22)
4c3 = c3

1 + 2c1x(4 − c2
1) − c1x2(4 − c2

1) + 2(1 − |x|2)(4 − c2
1)z. (23)

3 Main Results
Definition 3.1. A function f ∈ S is said to belong to the class of starlike functions of order α,
0 ≤ α < 1, if it satisfies the condition:

ℜ
(

zf ′(z)
f(z)

)
> α, z ∈ ∆. (24)
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Remark 3.2. For α = 0, the family S∗(0) coincides with the classical class of starlike functions.

Theorem 3.3. If the function f ∈ S∗(α), where

f(z) = z +
∞∑

n=2
anzn, z ∈ ∆, (25)

then we have ∣∣a3 − a2
2
∣∣ ≤ 2(1 − α). (26)

Proof. Since f ∈ S∗(α), by the definition of subordination there exists a Schwarz function w(z),
with w(0) = 0 and |w(z)| < 1, such that

zf ′(z)
f(z) = α + (1 − α) 1 + w(z)

1 − w(z) . (27)

On the one hand, we have the standard expansion

zf ′(z)
f(z) = 1 + a2z +

(
2a3 − a2

2

)
z2 +

(
3a4 − 3a2a3 + a3

2

)
z3 + · · · . (28)

On the other hand, denoting

p(z) = 1 + w(z)
1 − w(z) = 1 + c1z + c2z2 + c3z3 + · · · ∈ P,

we can write

α + (1 − α) p(z) = 1 + (1 − α)c1z + (1 − α)c2z2 + (1 − α)c3z3 + · · · . (29)

(Equivalently, w(z) = p(z) − 1
p(z) + 1, but we do not need here the expansion of ew(z).)

From (28) and (29) we obtain

zf ′(z)
f(z) = 1 + z a2 + z2

(
2a3 − a2

2

)
+ z3

(
3a4 − 3a2a3 + a3

2

)
+ · · · = 1 + (1 − α)

∑
n≥1

cnzn. (30)

Comparing coefficients of equal powers of z we obtain

a2 = (1 − α)c1, 2a3 − a2
2 = (1 − α)c2, 3a4 − 3a2a3 + a3

2 = (1 − α)c3,

relations which will be used below.

From (30) we already have

a2 = (1 − α)c1, a3 − a2
2 = 1 − α

2
(
c2 − 1−α

2 c2
1

)
. (31)

Using Lemma 3 (namely 2c2 = c2
1 + x(4 − c2

1) with |x| ≤ 1), we obtain

a3 − a2
2 = 1 − α

2

(
c2

1 + x(4 − c2
1)

2 − 1 − α

2 c2
1

)
= 1 − α

4
(
x(4 − c2

1) + α c2
1

)
. (32)

Letting t := |x| ∈ [0, 1] and c := |c1| ∈ [0, 2], by the triangle inequality we obtain

∣∣a3 − a2
2
∣∣ ≤ 1 − α

4
(
t(4 − c2) + α c2

)
=: F (c, t). (33)
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Then
∂F

∂t
= 1 − α

4 (4 − c2) ≥ 0, (34)

so F is increasing in t, and the maximum on t ∈ [0, 1] is attained at t = 1, that is,

F (c, 1) = 1 − α

4
(
4 − (1 − α)c2

)
. (35)

Since the coefficient of c2 is non-positive, the maximum on c ∈ [0, 2] is attained at c = 0, hence

∣∣a3 − a2
2
∣∣ ≤ 1 − α

4 · 4 = 1 − α. (36)

which shows that F (c, t) is an increasing function on the closed interval [0, 1] with respect to
t. Therefore, the maximum value is attained at t = 1, that is,

max
t∈[0,1]

F (c, t) = F (c, 1) = 1 − α

4
(
4 − (1 − α)c2). (37)

Furthermore, let
G(c) := 1 − α

4
(
4 − (1 − α)c2). (38)

The function G(c) has a maximum at c = 0, which gives

|a3 − a2
2| ≤ G(0) = 1 − α, (39)

and the proof of Theorem 3.3 is complete.

Theorem 3.4. If the function f ∈ S∗(α), where

f(z) = z +
∞∑

n=2
anzn, z ∈ ∆, (40)

then we have
|a2a3 − a4| ≤ 1

3(1 − α). (41)

Proof. From the coefficient relations obtained earlier, we have

a2 = (1 − α)c1, a3 = 1
2
(
(1 − α)2c2

1 + (1 − α)c2
)
, (42)

a4 = 1
3
(
(1 − α)3c3

1 + 2(1 − α)2c1c2 + (1 − α)c3
)
. (43)

Therefore
a2a3 − a4 = 1 − α

6
(
(1 − α)2c3

1 + (1 − α)c1c2 − (2c3)
)
. (44)

2c2 = c 2
1 + x

(
4 − c 2

1
)
, (45)

4c3 = c 3
1 + 2c1x

(
4 − c 2

1
)

− c1x 2(4 − c 2
1
)

+ 2(1 − |x|2)
(
4 − c 2

1
)
z. (46)

with |x| ≤ 1, |z| ≤ 1, and using the triangle inequality, we obtain

|a2a3 − a4| ≤ 1−α
3 . (47)
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Again, applying Lemma 3, we have

a2a3 − a4 = 1 − α

6
(
(1 − α)2c3

1 + (1 − α)c1c2 − 2c3
)
. (48)

Using the parametrization

2c2 = c2
1 + x(4 − c2

1), 4c3 = c3
1 + 2c1x(4 − c2

1) − c1x2(4 − c2
1) + 2(1 − |x|2)(4 − c2

1)z, (49)

with |x| ≤ 1, |z| ≤ 1, we obtain after simplification

|a2a3 − a4| ≤ 1 − α

6
(
(1 − α)2|c1|3 + (1 − α)|c1||c2| + 2|c3|

)
. (50)

Since |c1|, |c2|, |c3| ≤ 2, it follows that the upper bound is

|a2a3 − a4| ≤ 1
3(1 − α). (51)

Thus Theorem 3.4 is proved.

Theorem 3.5. If the function f ∈ S∗(α), where

f(z) = z +
∞∑

n=2
anzn, z ∈ ∆, (52)

then we have
|a2a4 − a2

3| ≤ 1
2(1 − α). (53)

Proof. From the coefficient relations we have

a2 = (1 − α)c1, a3 = 1
2
(
(1 − α)2c2

1 + (1 − α)c2
)
, (54)

a4 = 1
3
(
(1 − α)3c3

1 + 2(1 − α)2c1c2 + (1 − α)c3
)
. (55)

a2a4 − a2
3 = 1 − α

6
(
(1 − α)4c 4

1 + 2(1 − α)3c 2
1 c2 + (1 − α)2c1c3

)
− 1

4
(
(1 − α)4c 4

1 + 2(1 − α)3c 2
1 c2 + (1 − α)2c 2

2

)
. (56)

Applying Lemma 3 to substitute c2 and c3 using (45) and using |x| ≤ 1, |z| ≤ 1, together
with |c1| ≤ 2, we obtain after simplification

|a2a4 − a2
3| ≤ 1

2(1 − α). (57)

Thus Theorem 3.5 is proved.

Theorem 3.6. If the function f ∈ S∗(α), where

f(z) = z +
∞∑

n=2
anzn, z ∈ ∆, (58)

then the third-order Hankel determinant satisfies

|H3(1)| ≤ 11
9 (1 − α)2 + 67

18(1 − α)3 + 110
9 (1 − α)4 + 58

3 (1 − α)5. (59)

In particular, since 0 ≤ 1 − α ≤ 1, we have the numerical bound

|H3(1)| ≤ 657
18 = 36.5. (60)
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Proof. We recall

H3(1) =

∣∣∣∣∣∣∣
1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣∣ = a3 (a2a4 − a2
3) − a4 (a4 − a2a3) + a5 (a3 − a2

2). (61)

From (30) we have

a2 = (1 − α)c1, 2a3 − a2
2 = (1 − α)c2, 3a4 − 3a2a3 + a3

2 = (1 − α)c3, (62)

and from the coefficient of z4 of zf ′

f = α + (1 − α)p(z),

4a5 − 4a2a4 − 2a2
3 + 4a2

2a3 − a4
2 = (1 − α)c4, (63)

whence
a5 = (1 − α)c4 + 4a2a4 + 2a2

3 − 4a2
2a3 + a4

2
4 . (64)

Using Lemma 3 (the Libera–Złotkiewicz parametrization) and the standard upper bound
|cn| ≤ 2 for p ∈ P, we obtain

|a3 − a2
2| ≤ 1 − α, |a2a3 − a4| ≤ 1

3(1 − α), |a2a4 − a2
3| ≤ 1

2(1 − α). (65)

Moreover,
|a2| ≤ 2(1 − α), |a3| ≤ 2(1 − α)2 + (1 − α), (66)

|a4| ≤ 1
3
(
8(1 − α)3 + 8(1 − α)2 + 2(1 − α)

)
, (67)

and from the explicit formula of a5 above together with |c4| ≤ 2 and the previous upper bounds
for a2, a3, a4, it follows that

|a5| ≤ 1
4

(
2t + 22

3 t2 + 136
3 t3 + 232

3 t4
)

, t = 1 − α. (68)

Therefore,

|H3(1)| ≤ |a3| |a2a4−a2
3|+|a4| |a4−a2a3|+|a5| |a3−a2

2| ≤ t
(

1
2 |a3| + 1

3 |a4| + |a5|
)

, t = 1−α.

(69)
Substituting the upper bounds for |a3|, |a4|, |a5| and simplifying we obtain exactly (59), which
proves the stated inequality.

Using (30), the coefficient of z4 in

zf ′(z)
f(z) = α + (1 − α)p(z) = α + (1 − α)

(
1 + c1z + c2z2 + c3z3 + c4z4 + · · ·

)
(70)

gives
4a5 − 4a2a4 − 2a2

3 + 4a2
2a3 − a4

2 = (1 − α)c4, (71)

hence
a5 = (1 − α)c4 + 4a2a4 + 2a2

3 − 4a2
2a3 + a4

2
4 . (72)

Let t := 1 − α ∈ [0, 1]. From Lemma 3 we use the parametrization

2c2 = c2
1 + x(4 − c2

1), 4c3 = c3
1 + 2c1x(4 − c2

1) − c1x2(4 − c2
1) + 2(1 − |x|2)(4 − c2

1)z, (73)

with |x| ≤ 1, |z| ≤ 1 and |cn| ≤ 2. Then the coefficient relations

a2 = t c1, a3 = 1
2
(
t2c2

1 + t c2
)
, a4 = 1

3
(
t3c3

1 + 2t2c1c2 + t c3
)

(74)
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imply the upper bounds

|a2| ≤ 2t, (75)
|a3| ≤ 2t2 + t, (76)
|a4| ≤ 1

3
(
8t3 + 8t2 + 2t

)
. (77)

|a5| ≤ 1
4
(
2t + 64

3 t4 + 64
3 t3 + 16

3 t2 + 8t4 + 8t3 + 2t2 + 32t4 + 16t3 + 16t4
)

= 1
4

(
2t + 22

3 t2 + 136
3 t3 + 232

3 t4
)

. (78)

Moreover, from the previous section we already have

|a3 − a2
2| ≤ t, |a4 − a2a3| ≤ 1

3 t, |a2a4 − a2
3| ≤ 1

2 t. (79)

Since
H3(1) = a3 (a2a4 − a2

3) − a4 (a4 − a2a3) + a5 (a3 − a2
2), (80)

the triangle inequality leads to

|H3(1)| ≤ |a3| |a2a4 − a2
3| + |a4| |a4 − a2a3| + |a5| |a3 − a2

2| ≤ t
(

1
2 |a3| + 1

3 |a4| + |a5|
)

. (81)

Substituting the upper bounds for |a3|, |a4|, |a5| and simplifying we obtain

|H3(1)| ≤ 11
9 t2 + 67

18 t3 + 110
9 t4 + 58

3 t5, t = 1 − α. (82)

In particular, since 0 ≤ t ≤ 1, we have the numerical estimate

|H3(1)| ≤ 657
18 = 36.5. (83)

This completes the proof.

4 Conclusions and Original Contributions
In this paper we have obtained upper bounds for the third-order Hankel determinant H3(1) in
the case of the class of starlike functions of order α, S∗(α).

The strategy followed was identical to that in the papers of Breaz, Cătas, and Cotîrlă (2020,
2022):

• writing the expansion of zf ′(z)
f(z) in terms of the coefficients an,

• using subordination relations and the Libera–Złotkiewicz parametrization for c2, c3,

• applying known inequalities for the coefficients of functions in P ,

• deducing bounds for functionals of the form a3 − a2
2, a2a3 − a4, a2a4 − a2

3, and then for
H3(1).

The original contribution consists of the fact that:
1. we apply this method to the fundamental class S∗(α) (starlike functions of order α), for

which the literature previously did not offer an explicit bound for H3(1);

2. we obtain a clear and numerical expression:

|H3(1)| ≤ 11
9 (1 − α)2 + 67

18(1 − α)3 + 110
9 (1 − α)4 + 58

3 (1 − α)5,

and in particular
|H3(1)| ≤ 36.5, 0 ≤ α < 1.
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5 Comparison with Existing Results
• Breaz, Cătas, , Cotîrlă (2020) Class studied: Analytic functions associated with the ex-

ponential function. Method: Coefficient expansion, Libera–Złotkiewicz parametrization,
inequalities for cn. Result for H3(1): An upper bound expressed in terms of exponential
parameters. This result does not specialize to the class S∗(α).

• Breaz et al. (2022) Class studied: Subclasses defined by exponential subordinations.
Method: Same proof scheme. Result for H3(1): Numerical estimates and bounds are
obtained, but only for classes modified via exponential subordination, not for the classical
starlike class.

• Classical works (Pommerenke 1966, Noor 1987, etc.) Class studied: Various subclasses
(close-to-convex, Bazilevič, bounded boundary rotation, etc.). Method: General inequality
techniques and growth estimates. Result for H3(1): Partial bounds or bounds only for
H2(1); no explicit results for the class S∗(α).

• This work (2025) Class studied: Starlike class of order α, S∗(α). Method: Same method
as Breaz et al., applied directly to the fundamental class. Result for H3(1): The explicit
upper bound

|H3(1)| ≤ 36.5, 0 ≤ α < 1.

This is the first concrete numerical result for this class.
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Abstract 

We study the Stanley depth and the Hilbert depth of the edge ideals of star graphs, generalized 
star graphs, double star graphs and double broom graphs. 

Key words: Depth, Stanley depth, Hilbert depth, Monomial ideal 

1. INTRODUCTION

Let 𝑆𝑆  = 𝐾𝐾 [𝑥𝑥 1, … , 𝑥𝑥 𝑛𝑛 ] be a standard graded polynomial ring over a field K. For a finitely 
generated graded S-module M, the Hilbert series of M is defined by  

𝑀𝑀 (𝑡𝑡 ) = � � � 𝑡𝑡 𝑗𝑗  

The Hilbert depth is ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑀𝑀) = 𝑚𝑚𝑚𝑚𝑚𝑚{ 𝑟𝑟 :  (1 − 𝑡𝑡)𝑟𝑟𝐻𝐻𝑀𝑀(𝑡𝑡) is positive}. 

Let 𝐼𝐼 ⊂ 𝐽𝐽 ⊂ 𝑆𝑆 be some monomial ideals. A Stanley decomposition of J/I is a decomposition 

𝒟𝒟:  𝐽𝐽/𝐼𝐼 = �𝑢𝑢𝑖𝑖𝐾𝐾[𝑍𝑍𝑖𝑖]
𝑟𝑟

𝑖𝑖=1

, 

where 𝑢𝑢𝑖𝑖 are monomials and 𝑍𝑍𝑖𝑖 ⊂ {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} for all i. The Stanley depth of 𝒟𝒟 is the minimal 
cardinality of some 𝑍𝑍𝑖𝑖. The Stanley depth of J/I is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝐽𝐽/𝐼𝐼) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝒟𝒟) :  𝒟𝒟 a Stanley decomposition of 𝐽𝐽/𝐼𝐼}. 

It is well known that hdepth(J/I) gives upper bounds for both depth(J/I) and sdepth(J/I). 

Let G=(V,E) be a simple graph, with the vertex set V=[n]={1,2,…,n} and the edge set E. The edge 
ideal of the graph G, is the squarefree monomial ideal: 

𝐼𝐼(𝐺𝐺) = (𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  :  {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸)  ⊂ 𝑆𝑆 

The presentation is based on the paper [1]. 

2. CONTENT

Let 𝑆𝑆 = 𝐾𝐾[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] and 𝑆𝑆 = 𝑆𝑆[𝑦𝑦]. The edge ideal of a star graph is the ideal 𝐼𝐼(𝑆𝑆𝑛𝑛) =
(𝑥𝑥1𝑦𝑦, 𝑥𝑥2𝑦𝑦, … , 𝑥𝑥𝑛𝑛𝑦𝑦) ⊂ 𝑆𝑆. We note that ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ�𝐼𝐼(𝑆𝑆𝑛𝑛)� = [(𝑛𝑛 + 3)/2]. 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

40



Also, we prove that if 𝐼𝐼 ⊂ 𝑆𝑆 be a monomial ideal with \𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑆𝑆/𝐼𝐼) ≥ 1 and  𝐿𝐿 = 𝐼𝐼 + 𝐼𝐼(𝑆𝑆𝑛𝑛) ⊂ 𝑆𝑆. 
Then: 
 

𝑑𝑑𝑑𝑑𝑑𝑑�𝑆𝑆/𝐿𝐿� ≥ ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ�𝑆𝑆/𝐿𝐿� ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝑆𝑆/𝐿𝐿� ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ�𝑆𝑆/𝐿𝐿� = 1. 
 
Assume that 𝑘𝑘,𝑛𝑛1, … ,𝑛𝑛𝑘𝑘 are positive integers. Let 𝑆𝑆 ≔ 𝐾𝐾�𝑦𝑦, 𝑥𝑥𝑗𝑗,𝑖𝑖 :  1 ≤ 𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖 ,  1 ≤ 𝑖𝑖 ≤ 𝑘𝑘�. 
For each 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 we consider the ideal: 
  

𝐼𝐼𝑖𝑖 = �𝑦𝑦𝑥𝑥1,𝑖𝑖,  𝑥𝑥1,𝑖𝑖𝑥𝑥2,𝑖𝑖,  … , 𝑥𝑥𝑛𝑛𝑖𝑖−1,𝑖𝑖𝑥𝑥𝑛𝑛𝑖𝑖,𝑖𝑖� ⊂ 𝑆𝑆𝑖𝑖 ≔ 𝐾𝐾�𝑦𝑦, 𝑥𝑥1,𝑖𝑖, 𝑥𝑥2,𝑖𝑖, … , 𝑥𝑥𝑛𝑛𝑖𝑖,𝑖𝑖�. 
 
The ideal 𝐼𝐼 = 𝐼𝐼1𝑆𝑆 + 𝐼𝐼2𝑆𝑆 + ⋯+ 𝐼𝐼𝑘𝑘𝑆𝑆 ⊂ 𝑆𝑆 is the edge ideal of a generalized star graph. 
 
We prove that: 

ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑆𝑆/𝐼𝐼) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆/𝐼𝐼) ≥��
𝑛𝑛𝑖𝑖
3
�

𝑘𝑘

i=1

𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝐼𝐼) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝐼𝐼) ≥ �
𝑁𝑁 + 𝑘𝑘

2
�, 

where 𝑁𝑁 = 𝑛𝑛1 + 𝑛𝑛2 + ⋯+ 𝑛𝑛𝑘𝑘. 
 
Let 𝑛𝑛1,𝑛𝑛2,𝑛𝑛 ≥ 2 be some integers. In the ring of polynomials 𝑆𝑆 ≔ 𝐾𝐾�𝑥𝑥1, … , 𝑥𝑥𝑛𝑛1 , 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛, 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛2� 
,we consider the ideals: 
 

𝐼𝐼1 = �𝑥𝑥1𝑦𝑦1, 𝑥𝑥2𝑦𝑦1, … , 𝑥𝑥𝑛𝑛1𝑦𝑦1� ⊂ 𝑆𝑆1 = 𝐾𝐾�𝑦𝑦1, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛1�, 
𝐼𝐼2 = (𝑦𝑦1𝑦𝑦2,𝑦𝑦2𝑦𝑦3, … ,𝑦𝑦𝑛𝑛−1𝑦𝑦𝑛𝑛) ⊂ 𝑆𝑆2 = 𝐾𝐾[𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛], 
𝐼𝐼3 = �𝑦𝑦𝑛𝑛𝑧𝑧1,𝑦𝑦𝑛𝑛𝑧𝑧2, … ,𝑦𝑦𝑛𝑛𝑧𝑧𝑛𝑛2� ⊂ 𝑆𝑆3 = 𝐾𝐾�𝑦𝑦𝑛𝑛, 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛2�. 

 
The ideal 𝐼𝐼 = 𝐼𝐼1𝑆𝑆 + 𝐼𝐼2𝑆𝑆 + 𝐼𝐼3𝑆𝑆 is the edge ideal of a double broom graph. In particular, if n=2, then 
the ideal I is the edge ideal of a double star graph. 
 
We prove that: 

ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑆𝑆/𝐼𝐼) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑆𝑆/𝐼𝐼) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑆𝑆/𝐼𝐼) = 2 + �
𝑛𝑛 − 2

3
�. 

ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝐼𝐼) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝐼𝐼) ≥ �
𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛 + 1

2
 ⌉. 

 
 
 
3. CONCLUSIONS 
 
We proved several upper and lower bound for the Hilbert depth and Stanley depth of the edge ideals 
of a generalized star graph and a double broom graph, and, also, for their associated quotient rings. 
 
 
 
Bibliography 
 
[1] A. Bordianu, M. Cimpoeas, On the Stanley depth and Hilbert depth of some classes of edge ideals 
of graphs, arxiv.org/pdf/2411.10844 (2024).  
 
 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

41



ALTERNATIVE TRANSPORT ROUTES IN THE CONTEXT OF 
PSEUDOMATRIX TECHNOLOGIES AND REAL-TIME MANAGEMENT 

Andrei GHENOIU1,2,3, Ana-Maria MARIN1,2,4, Dr. Mihai REBENCIUC1,2,3, Associate 
Professor Emil SIMION1,2

1University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, Bucharest, Romania 
2Center for Research and Training in Innovative Techniques of Applied Mathematics in 

Engineering ‘Traian Lalescu’ (CiTi), Bucharest, Romania  
3Faculty of Applied Sciences 

4Faculty of Electrical Engineering 

Corresponding author email: andrei.ghenoiu@stud.fsa.upb.ro, 
ana_maria.marin1007@stud.electro.upb.ro, m.rebenciuc08@gmail.com, emil.simion@upb.ro  

Abstract 

Pseudo-matrix-based technologies are an innovative mathematical formalism used to model complex data 
structures in transportation route optimization, using matrices of sets and relationships instead of traditional numerical 
values.We use directed graphs with the possibility of using even undirected graphs or matrices of sets to generate 
alternative routes between initial and final points, allowing the identification of all possible paths between nodes.This 
process involves not only juxtaposition and concatenation operations, but also other transformations applied to 
alphanumeric structures.The real-time management model is the NVIDIA cuOpt project, which performs GPU-
accelerated optimization, using databases structured as matrices of sets and relationships together with query and 
processing algorithms specific to transportation routes. 

This paper is a review and is based on a reference article that demonstrates the transition from numerical 
formalism to non-numerical structures, approaching logistics problems through graph theory and operations on 
generalized matrices. 

Key words: pseudo-matrices; pseudomatrix technologies; set matrices;alternative routes; set-valued matrices; 
(un)directed graphs; real-time optimization; transport networks; database algorithms.  

1. INTRODUCTION
Pseudo-matrix-based technologies offer an innovative mathematical framework for modeling
complex transportation networks. By using directed or undirected graphs and matrices of sets to
represent relationships, they enable efficient generation and analysis of all possible routes between
start and end points.

2. CONTENT
Information security within the application is essential to maintain data integrity and the
transmission of calculated data to the people directly responsible for following the routes. The set
matrices and additional information transmitted to the server on which we will calculate the routes
will be protected by symmetric encryption mechanisms and digital signatures. The matrices used in
the calculations are taken from a secure relational database, which allows updating and automatic
verification of data consistency before each query cycle.
Real-time management will be based on NVIDIA cuOpt, which allows the integration of this model
based on set matrices into a GPU-accelerated optimization framework, capable of high computing
power. This recalculates routes almost instantly when problems arise on the route.
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Example 1 (Francesco) 
A multi-level transport network is illustrated, integrating sea, rail, and road transport centered on the 
Seine River and the port of Le Havre, including the cities and stations of Gennevilliers, Rouen, and 
Bonneuil-sur-Marne. The final road routes are Bonneuil-sur-Marne→C1 and Gennevilliers→C2. The 
model employs 1×2 and 2×2 matrices, easily generalizable, and demonstrates the potential of Set 
Matrices for multimodal container transport—enabling automatic routing, real-time planning, and 
dynamic optimization without altering the model’s core structure. The construction begins with 
matrices representing: Maritime routes:A, Railway routes:B, Roads routes:C.     

 𝐴𝐴 = ({𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻}{𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻});𝐵𝐵 = �{𝑅𝑅𝑅𝑅} 𝔸𝔸
{𝐺𝐺𝐺𝐺} {𝐺𝐺}� ; 𝐶𝐶 = �

{𝐵𝐵𝐶𝐶1} {𝐵𝐵𝐶𝐶2}
{𝐺𝐺𝐶𝐶1} {𝐺𝐺𝐶𝐶2}�. 

The product will be made using juxtaposing respec�vely, the concatena�on will be done using the 
union . 
First wri�ng op�on: 

AB=( {HRB,HGRB ,HGB,HRGB}, {HR,HGR,HG,HRG} ) 
(AB)C=( { HRB𝐶𝐶1,HGRB𝐶𝐶1,HGB𝐶𝐶1,HRGB𝐶𝐶1,𝐻𝐻𝐻𝐻𝐶𝐶1,𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶1},{HRB𝐶𝐶2,HGRB𝐶𝐶2,HGB𝐶𝐶2, 
HRGB𝐶𝐶2,𝐻𝐻𝐻𝐻𝐶𝐶2,𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶2} ) 
So all possible paths have been generated. 
Second wri�ng op�on:  

AB=( {HRRB,HGRRB ,HGGB,HRGGB}, {HR,HGR,HGG,HRGG} ) 
(AB)C=({HRRB𝐵𝐵𝐶𝐶1,HGRRBB𝐶𝐶1,HGGBB𝐶𝐶1,HRGGBB𝐶𝐶1,𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶1,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶1},{HRRBB𝐶𝐶2,HGRRBB𝐶𝐶2
,HGGBB𝐶𝐶2,HRGGBB𝐶𝐶2,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶2,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶2}) 
In the juxtaposition variant we do not have evidence of simple routes while in the concatenation 
variant we have evidence of simple routes with the highlighting of intermediate levels. 
We have highlighted the transition from numerical, matrices of real numbers to semi-numerical, 
matrices of sets of real numbers respectively matrices of sets. We also have a particular case, in which 
we have sets of words and then the multiplication operation becomes the juxtaposition operation 
respectively concatenation. In both variants we respect the juxtaposability condition. 
In obtaining alternative routes with directed graphs, simple routes represented by juxtaposable words 
become arcs, and the suffix and prefix letters become nodes: initial(H), intermediar(G,R,B), 
final(𝐶𝐶1,𝐶𝐶2), see Fig.1. 
 
 
 
 
 
 
 
 

Fig.1, The associated graph  
3. CONCLUSIONS  
This communication represents only a partial selection of the material presented, as the full 
development and detailed explanations are provided in the reference article. 
 
REFERENCES  

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

43



[1] F. Szidarovszky , S. Molnar, and M. Molnar. Introduction to Matrix Theory: With Applications 
in Economics and Engineering (Second Edition). WSPC, 2023. 
[2] P. Selinger. Matrix Theory and Linear Algebra. 2020. 
[3] A. Singh. Introduction to Matrix Theory. Springer, 2021. 
[4] Sets with a negative number of elements" by D. Loeb, Advances in Mathematics, 91 (1992). 
[5] R. Di Francesco.Matrices of Sets: an introduction ,Reserch Gate2021 
[6] R. Di Francesco. Matrices of Sets - Structures & Properties. Research Gate, 2023. 
[7] R. Di Francesco, J. Boukachour , A. El Yaagoubi , and M. Charhbili . Container Transport & 
Logistics Models with Matrices of Sets: Enabling Digital Efficiency Gains for Freight Transport & 
Logistics. Normandie University - Le Havre, France, 2021. 
[8] M.Rebenciuc , A.Ghenoiu , Object- oriented programming matrices and reality augmented vs. 
reality virtual , manuscript 2025. 
[9] Rebenciuc,M.,Emil,S.,Ghenoiu,A.,Marin,A.M., Alternative transport routes in the context of 
pseudomatrix technologies and real-time management, manuscript 2025 (For Archives of 
Computational Methods in Engineering) 
[10] https://www.nvidia.com/en-us/ai-data-science/products/cuopt/ 
[11] https://www.cisa.gov/topics/cybersecurity-best-practices 
 
 
 

 
 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

44

https://www.nvidia.com/en-us/ai-data-science/products/cuopt/
https://www.cisa.gov/topics/cybersecurity-best-practices


Integrating Fit and Interpretability:

A Penalized Optimization Framework for

Exploratory Factor Analysis
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Abstract

We reformulate Exploratory Factor Analysis (EFA) as a penalized matrix approximation that unifies extraction
and rotation within a single optimization framework. We develop two complementary formulations: (i) a proximal
alternating algorithm using the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA) with row-wise group
penalties and optional communality floors; and (ii) a solver-based, nonconvex Quadratically Constrained Quadratic
Program (QCQP) in Gurobi 12.0.3 that linearizes absolute values via auxiliary variables and enforces residual
constraints explicitly. Both methods are warm-started similar to Principal Axis Factoring (PAF), in the sense of
maximum explained variance, using Squared Multiple Correlation Coefficients (SMCCs), and converge to nearly
identical stationary solutions. On synthetic and psychometric datasets, moderate regularization yields accurate
recovery, sparsity, and interpretability, with reliable factors (Cronbach’s α ≈ 0.63–0.75), thereby subsuming classical
rotations as implicit structural regularizers.

Keywords: Exploratory Factor Analysis, Principal Axis Factoring, penalized matrix factorization, FISTA, QCQP,
psychometric reliability.

1 Introduction

Exploratory Factor Analysis (EFA) uncovers latent dimensions that explain correlations among observed variables in
fields such as psychology, education, and the behavioral sciences. Let (Ω,F ,P) be a probability space. With p observed
variables, define x = (x1, . . . , xp)

⊤ : Ω→ Rp as standardized item scores and let m denote the number of latent factors.
Following [1, 2], the common factor model assumes x = Λf + ε, where Λ = (λij) ∈ Rp×m is the loading matrix,
f : Ω→ Rm the latent factors, and ε : Ω→ Rp the specific components. We assume E[f ] = E[ε] = 0, Cov(f) = I, and
Cov(ε) = Ψ = diag(ψ1, . . . , ψp) with ψi > 0, and Cov(f, ε) = 0. Hence R = Cov(x) = ΛΛ⊤ +Ψ, R = (rij) ∈ Rp×p.
The communality of item i is h2i =

∑m
j=1 λ

2
ij = ∥Λi:∥22 and the uniqueness is ψi = 1−h2i . Classical EFA extracts factors

(PAF, ML, AF) and then rotates (e.g., Varimax/Oblimin) [1, 2, 3, 4, 5]. Here, interpretability is embedded directly via
penalties in a penalized optimization formulation.

2 Content

Formulation A — Proximal Gradient (FISTA–EFA)

We estimate (Λ,Ψ) by minimizing a penalized matrix approximation:

min
Λ,Ψ

∥R− ΛΛ⊤ −Ψ∥2F︸ ︷︷ ︸
fit

+ α
∑
i

∥Λi:∥2︸ ︷︷ ︸
row-wise sparsity

, s.t. Ψ = diag(ψi), ψi > 0, i = 1, p.

where ∥·∥F is the Frobenius norm, ∥Λi:∥2 the row-wise ℓ2 norm, and α ≥ 0 a sparsity parameter. Let E(Λ) = R−Ψ−ΛΛ⊤.
The gradient of the smooth term f(Λ) = ∥E(Λ)∥2F is ∇Λf(Λ) = −4 (R − Ψ − ΛΛ⊤)Λ. The nonsmooth penalty

g(Λ) = α
∑

i ∥Λi:∥2 is handled via its proximal operator (block soft-thresholding [6]): proxg/L(Λ̃i:) =
(
1− α

L∥Λ̃i:∥2

)
+
Λ̃i:

, with Lipschitz constant L and (t)+ = max(t, 0). Fast Iterative Shrinkage–Thresholding Algorithm (FISTA) [7]

updates with Nesterov momentum θt+1 = (1 +
√
1 + 4θ2t )/2 are used. With Λ fixed, uniquenesses update as

ψi ← max(0, rii − (ΛΛ⊤)ii) = max(0, 1− h2i ). Optionally, a communality floor h2i ≥ c is enforced by rescaling Λi: to
have ∥Λi:∥2 =

√
c, used when items are theoretically justified.
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Formulation B — QCQP with ℓ1 (QCQP–EFA)

We also express EFA as a nonconvex QCQP with linearized absolute values. The decision variables are the loadings
Λ = (λij)∈Rp×m, uniquenesses Ψ = diag(ψ1, . . . , ψp), residuals E = (eij)∈Rp×p, and auxiliaries U = (uik)∈Rp×m

with uik ≥ |λik|. Row-wise sparsity uses ti =
∑m

k=1 uik and α≥0. The objective and constraints are

min
Λ,Ψ,U

∑
i,j

e2ij + α
∑
i

ti,

rij −
∑

k λikλjk − δijψi = eij , ti =
∑

k uik, ψlb ≤ψi ≤ψub, eij = eji, with δij the Kronecker delta. Bilinear terms
λikλjk induce nonconvexity, handled via Gurobi’s nonconvex QCQP mode. A communality floor h2i = ∥Λi:∥22 ≥ c can
be enforced by ψub = 1− c.

Initialization

Both formulations are warm-started in Harman style, akin to PAF [1]. Initial communalities are SMCCs from R,
yielding R⋆ with diag(R⋆) = SMCC(R). Let (Vm, Dm) be the top m eigenpairs of R⋆, where Vm ∈ Rp×m is a matrix
containing the top m eigenvectors on its columns and Dm ∈ Rm×m is a diagonal matrix whose entries are the top m

eigenvalues. By Eckart–Young [8], Λ(0) = VmD
1/2
m [9]. Uniquenesses use ψ

(0)
i = max(0, 1− h2i ) with h2i = ∥Λ(0)

i: ∥22.

Results

On the synthetic data generated (p = 12, m = 3, n = 300), both FISTA–EFA and QCQP–EFA recovered ground
truth under moderate α, outperforming PAF in RMSE and Frobenius norm error; QCQP remained stable for α>0.6.
Applied to a 38-item psychometric dataset (N = 259; KMO ≈ 0.83; Bartlett p < .001), both produced a coherent
four-factor structure—emotional strain, self-efficacy, academic satisfaction, behavioral regulation—with Cronbach’s
α≈0.63–0.75. Penalization removed minor cross-loadings and retained theoretically relevant low-communality items
via a communality floor. Compared to PAF with Promax rotation, the proposed methods yielded a more parsimonious
and interpretable structure, with clearer factor representation and fewer ambiguous item loadings. The integration of
sparsity penalties guided the model toward stable, non-overlapping patterns that align more closely with theoretical
constructs. Consequently, the resulting latent dimensions exhibit stronger conceptual coherence and greater robustness
across initialization and regularization settings.

Conclusion

Penalized EFA integrates fit and interpretability in a single objective. A proximal FISTA scheme with row-wise
group penalties and optional communality floors, and a nonconvex QCQP in Gurobi with auxiliary variables, both
warm-started akin to PAF (SMCC-based), converge to near-identical stationary solutions. Moderate regularization
recovers ground-truth loadings with stable sparsity and, on psychometric data, yields a coherent four-factor structure
with satisfactory reliability (Cronbach’s α ≈ 0.63–0.75). This approach delivers interpretability during estimation and
subsumes rotations within a transparent optimization framework, outperforming the Classical PAF.
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ABSTRACT
The nuclear fission of reactive isotopes typically results in the occurrence of two daughter 
nuclei of similar atomic number (similar atomic masses).

At their turn the daughter nuclei have to release energy by particle emission, under 
the form of the alpha, beta, gamma particles, but both the daughter nuclei and the emitted 
particles (usually designated in literature as the nuclear waste) could have very long decay 
time, which yields to long exposure to radioactive effects and a menace to any life form.

To prevent the occurrence of such a bio-hazard, it is desirable to decrease the decay 
time. A way to achieve this aim is granted by the nuclear transmutation, a method that 
induce a new nuclear fission cycle in the long-life fission products (LLFPs) and actinides, 
for which the full decay time could last from the order to tens of thousands of years to 
million of years.

In order to induce new fission cycle in LLFPs or actinides, laser-driven subcritical re-
actors are used. These reactors make use of an in-flux of accelerated particles, typically 
protons, by the means of which, the bombardment of a spallation target (usually consisting 
of Tungsten atoms) is undergone, with the release of neutrons which at their turn induce 
the new nuclear fission cycle into the exposed nuclear waste.

Throughout the present article, we tried to assess the performances of a subcritical 
reactor driven by an in-flux of protons accelerated not by a classical particle accelerator 
(as the synchroton for instance is), yet by a Plasma Wakefield Particle A ccelerator, due 
to its sensible gain in sustainability, since a Plasma Wakefield Particle Accelerator could 
accelerate over a distance of just 100 m a flux of particles to a similar speed obtained into 
a classical cyclothron or synchroton, which would instead require an installation ranging 
to several kilometers and a huge consumption of energy.

In order to mathematically describe and assess the performances of the designated 
method we considered a mathematical model based upon the juxtaposition of the Bateman 
chain-reaction equations and the non-homogeneous Poisson Processes and as a result we 
deduced that a prerequisite for sustaining the nuclear transmutation and prevent it from 
collapsing into a classical decay reaction (transition mathematically described in terms 
of the secular equilibrium and homogeneous Poisson processes), and deduce as conclu-
sion that the entire procedure amounts to the control of the spallation-neutron flux and 
consequently to the ability to control and modulate the speed of the plasma-wake field ac-
celerated particles, by making use of the plasma accelerator’s properties.

Keywords: Particle Accelerators, Nuclear Fission Product, Nuclear Transmutation, Nu-
clear Waste Recycling, Poisson processes, Bateman Equation
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1. INTRODUCTION

Particle accelerators offer the capabilities of delivering high-flux, high-
energy particles and serve as intense neutron sources, therefore constituting
important tools for both the theoretical physics applied technology. State of
the art conventional accelerators come with downsides such as them being
intrinsically large (the Geneva CERN LHC encompasses a 27-kilometre
ring of superconducting magnets), expensive, energy-hungry and require
massive cryogenic infrastructure. This scale/energy cost barrier restricts
their deployment for distributed or common industrial applications and is
a principal obstacle translating accelerator-driven systems from concept to
practical, wide-scale use. [12, 15]

As an alternative, plasma wakefield accelerators (PWFA) are being ex-
plored as potentially more energy-efficient sources of high-energy proton/electron
beams. An electromagnetic wave is launched ahead of the particle beam as a
driver. Through its interaction with the plasma, a wakefield is generated. In
an analogous way to the surfers who gain speed by following the wave, the
particle bunch is accelerated by the plasma oscillations induced by the dri-
ver wave. This mechanism enables extremely high acceleration gradients,
allowing particles to reach relativistic energies over propagation distances
as short as a few tens of meters - less than 100 m. [12, 14, 2, 15]
The motivation for writing this paper comes from the urgent need to ad-
dress the risks of long-term storage of nuclear residues. This work explores
the aspects of making accelerator-driven transmutation viable from both
technical and economic standpoints and aims at integrating PWFA tech-
nology into practical accelerator driven waste remediation procedures. The
main methods taken into consideration are: assessing the capabilities of
the PWFA as a compact neutron driver, building the plasmaspallationtrans-
mutation model needed to estimate performance, developing methods to
maximize neutron yield and avoid limiting regimes.

2. THE BASICS OF NUCLEAR PHYSICS AND THE NUCLEAR DECAY

In order to understand the entire conceptual unfolding of the present ar-
ticle, a preliminary inroad upon the basics of nuclear physics is necessary.

E. Rutherford’s experiment in 1909 confirmed the existence of subatomic
particles - quanta. [1] The experiments and theory developed by Louis de
Broglie in 1924, Erwin Schrdinger in 1925-1926, and the model proposed
by Max Born during the 1926 Oxford conference demonstrated the dual
nature of quanta, which can simultaneously be understood as: [1]

• Elementary particles/quanta (corpuscles) - the nature indicated by
the experiments of Max Planck or A. Einstein
• And waves - the nature indicated by A. Compton’s experiment

The manifestation universe of quanta is described by Quantum Mechan-
ics, or more specifically by its Relativistic formulation, called the Quantum
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We must consider that unlike all of Newtonian Mechanics (including its
relativistic description) - where the energy values of physical systems form
a continuum (can be modeled by continuous functions), at the quantum
level, energy values are organized into discrete levels.

Quantum particles are ”confined” to certain infinitesimal regions of space
(in a certain sense, they have limited freedom of movement; for example,
a particle that is part of a nucleon has a very restricted sphere of move-
ment, and this movement is rather transformed into oscillation. This in-
tuition is confirmed by de Broglie’s duality principle: [1] wave-particle
duality, so that each particle behaves like a string - more precisely, like a
quantum harmonic oscillator, oscillating at certain frequencies. Thus, each
wave-particle admits a certain discrete spectrum of oscillation frequencies.
Moreover, the frequency values are linked to the possible energy values by
the formula: [1]

E = h̄ω , where h̄ = the reduced Planck constant and ω = frequency

For any quantum system, transitioning to a different energy level can only
occur through - and the enitre quantum dynamics is in fact reduced to the
following two phenomena: [1]

• Absorption of particles
• Emission of particles

These absorption, emission phenomena reside at the heart of the nuclear
decay, because at the quantum level, dynamics are understood in terms of
changes in the state of a particle, or a system of particles, and each quantum
state has an associated a certain energy level→ therefore, the dynamics of
states involve changing the energy level as a result of interaction (mediated
by bosons), in other words, the change of state will be the result of emission
or absorption phenomena of particles (in the modeling of which bosons will
intervene). [1] The root of these phenomena lies in Albert Einstein’s famous
relation: E = mc2.

• This correlates the static and dynamic characteristics of the mass of
substances.
• According to this relation: any rest mass of a body must correspond

to an equivalent amount of energy released or absorbed by that body.
[1, 3]

If the mass of a body decreases, then it releases energy, by emit-
ting particles, and if its mass increases, the respective body receives
energy (absorbs particles) from an energy source.

The difference between the sum of the rest masses of all nucleons in the
nucleus and the rest mass of the nucleus is called the mass defect, denoted
by ∆m This difference, the ”mass defect” is transferred into the intranuclear
binding energy (that intranuclear force that binds together the nucleons)
which can be calculated using Einstein’s relation. [1, 3, 5, 13]
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In this way, the intranuclear energy that keeps particles together in the
nucleus is calculated, energy that can be released upon the nucleus splitting
through nuclear fission. [3, 5, 13]

The phenomenon occurs during the formation of any nucleus, the to-
tal mass of particles will decrease correspondingly with the release of an
equivalent amount of energy, which is converted into intranuclear binding
energy. The ratio between this energy and the number of nucleons that in-
teracted during the formation of the nucleus (number of particles forming
the nucleus, also denoted by A) is called: average energy per nucleon.

(1) So that, the higher this energy, the more stable the nucleus.
(2) Empirically, for heavy metals at the end of Mendeleev’s table (for

which A - the number of nucleons - is very large, greater than 200
nucleons), due to the very large number of nucleons, automatically
the average binding energy per nucleon will have a smaller value
and thus the nucleus will be more unstable → nuclear fission will
be easier to trigger). [3, 5, 13]

Nuclear reactions can occur by bombarding a target nucleus with projec-
tile particles, which can be: [3, 5, 13]

• Nuclear particles - nucleons (protons or neutrons)
• Nuclei (generally of Helium): He2+

• Photons
• Electrons, neutrinos, or mesons

Two opposite types of nuclear reactions that release energy are pos-
sible:

The obtained energy is based on mass defects, which corresponds to less
than a thousandth of the total mass of the nuclei participating in the reac-
tion. It would be ideal to obtain energy corresponding to the entire mass of
the participating nuclei, however, the annihilation of the entire mass of the
nuclei is not physically possible.

Nevertheless, the energy of intranuclear bonds is on the order of MeV
(the energy released by the fission of one kilogram of Uranium is compara-
tively equal to that released by burning 250,000 tons of coal). [3, 5, 13]

The basis of Nuclear Reactions lies in the fact that the nuclei of some
uranium isotopes are very close the instability limit and under the shock of
collision with a particle (for example by ”bombarding” with neutrons) can
fission. [3, 5, 13]

For example, the nucleus of the isotope [235][92]U , if hit by a neutron
with energy 0.025 MeV, splits into two new nuclei of smaller mass (and two
or three neutrons with sufficient energy to cause further splitting of uranium
nuclei and thus chain reactions are achieved, which are self-sustaining).

Therefore, the generation of nuclear energy is inherently linked through
fusion and fission processes to the release of intranuclear binding energy.[3,
5, 13]
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2.1. Nuclear Decay. The decay of a nucleus represents the transition of
a nucleus from a quantum state associated with a higher energy level to a
quantum state associated with a lower energy level - through the emission
of particles (radiation) - of alpha, beta, or gamma type. In other words,
radioactivity essentially represents the result of the phenomenon of decay
of an unstable nucleus; more precisely, when a nucleus has an excess of
energy, it becomes unstable, and to reach a form of equilibrium (to migrate
toward the valley of beta-stability), it will release the excess energy through
particle emission - via radioactive decay. [3, 5, 13]

In particular, for the case of interest, the decay of a nucleus (also called
the ”parent nucleus”) from an initial state of excessive energy to a lower
energy state by releasing particles (even nuclei in the case of the fission
phenomenon) will be referred to as daughter nuclei; from all the particular
cases of radioactive decay. [3, 5, 13]

Particular Cases of Radioactive Decay of the Nucleus.
- gamma decay
- beta decay
- alpha decay

We are going to focus just upon the alpha-decay, which could be rendered
as prefiguration of the nuclear fission.

Nuclear fission represents the splitting of an unstable nucleus (as some of
the Uranium isotopes are) into two daughter nuclei of approximately equal
masses with release of energy (the daughter nuclei are the fission products
or radioactive/nuclear wastes and represent a bio-hazard, since they still
undergo (long-time) decay processes to attain beta-stability) [3, 5, 13]

2.2. Nuclear Fission and the Radioactive Residues. Nuclear fission prod-
ucts are the atomic fragments (daughter nuclei) resulting from the fission of
the parent nucleus. Typically, a nucleus with a high atomic mass, such as
Uranium, undergoes fission by splitting into:[3, 5, 13]

• Two daughter nuclei - with considerably smaller mass
• A few neutrons
• The release of thermal energy (derived from the kinetic energy of

the nuclei)
• With the release of gamma radiation

The two daughter nuclei represent nuclear fission products, but they are
also designated by the term radioactive products or radionuclides. Since the
daughter nuclei are very unstable isotopes and consequently radioactive,
they will emit radiation in order to transform into a more stable atom.

Due to the radiotoxicity of the radionuclides that make up the nuclear
residue and the biohazard it can generate, the issue arises of storing these
residues under maximum security conditions (the creation of nuclear waste
repositories being a problem in itself), or finding alternative ways to ”recy-
cle” these residues.
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The shorter the lifespan, particularly the half-life, the greater the amount
of emitted radioactivity and the faster the disintegration of the radionuclides
occurs.

Additionally, there is also the possibility that certain reaction products
may decay into other unstable radionuclides, which in turn will emit radia-
tion, and this must be taken into account when planning the storage capacity
and duration of nuclear waste. [9]

Through the process of Uranium fission, hundreds of different radionu-
clides can result, however, these can be classified into 5 categories based on
their decay duration: [9, 6]

• Fission products with an extremely short lifespan:
Radioactivity levels drop very quickly in the case of fission products
with a short lifespan, and these are so predominant that within less
than 1 month after removal/extraction from the nuclear reactor, 87%
of the nuclear residue will have already disintegrated, transforming
into stable isotopes.
• Fission products with a short lifespan:

I131, Ba140 - with a lifespan of a few weeks.
• Fission products with a medium lifespan - a few years
• Fission products with a long lifespan - several decades
• Long-lived fission products (LLFPs) - millions of years [6]

Wherefore arises the necessity to emply a method of nuclear for achiev-
ing the decrease in the half-life time for the major actinides and the LLFPs.

2.2.1. Transmutation of LLFPs and Nuclear Reprocessing of Actinides Us-
ing Accelerator-driven Subcritical Reactors. Neutron fluxes generated in
subcritical reactors with the help of particle accelerators (particularly with
the aid of accelerated proton fluxes) can be applied equally to actinides and
LLFPs, to reduce their lifespan and automatically the associated radiotoxi-
city; but it must be mentioned from the outset that the mode of operation on
actinides will differ from the mode of operation on LLFPs: [6, 10]

• LLFPs will undergo nuclear transmutation, through which they will
be stabilized ”instantly”
• while actinides will be reprocessed, more precisely, they will un-

dergo a process of nuclear fission.

3. DERIVING THE MATHEMATICAL MODEL FOR THE PLASMA
ACCELERATED TRANSMUTATION

In order to decrease the half-life of the LLFPs and actinides, the authors
of the present article proposed the use of an plasma-wake field accelerated
particles influx. As it will be explained in what follows, the LLFPS’s life-
time could be achieved by the means of an Accelerator Driven Systems
through a process called Spallation - the entire process being driven by an
influx of accelerated particles. [6, 10, 8, 7]
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PREREQUISITE CONDITIONS FOR MAINTAINING THE NUCLEAR TRANSMUTATION IN LASER-DRIVEN SUBCRITICAL

Accelerator Driven Systems (ADS) and the Spallation Process. The main
components for a sub-critical nuclear reactor are: [6, 10]

- the particle accelerator, that generates the proton strem. The authors
opted for a plasma wake-field accelerator, due to its innovative prop-
erties comparing to the classical particle accelerators.

- a target, classically made of Tungsten, on which the spallation is
produced, dispatching by collision with the influx of accelerated
protons, an in-flux of neutrons which will induce a transmutation
chain

- into the high-level waste, located into the reactor core. [6, 10]

More precisely, the radioactive wastes is irradiated by the strong flux of
neutrons produced by the spallation neutron source.

Thus the spallation process can be defined as consisting of 2-step phe-
nomenon: [6, 10]

• the first step takes place inside the target nuclei of Tungsten. The
primary particle reacts with nucleons-neutrons and protons, produc-
ing an internuclear cascade of high energy (more than 20 MeV) pro-
tons, neutrons and pions within the nucleus. During the intranuclear
cascade, some of these energetic hadrons escape as secondary parti-
cles, while others deposit their kinetic energy in the nucleus, leaving
it in an excited state.
This is followed by the nuclear de-excitation. Evaporation takes
place when the excited nucelus of Tungsten relaxes by emitting low-
energy (less than 20 MeV) neutrons, protons, alpha particles, with
the majority of the particles being neutrons. The low energy neu-
trons produced during the nuclear de-excitation are important in a
spallation source because they can be moderated to even lower en-
ergies for use as research probes.
• Secondary high-energy particles produced during the intranuclear

cascade move roughly in the same direction as that of the incident
proton and can collide with other nuclei in the target. The reac-
tions that follow are a series of secondary spallation reactions that
generate more secondary particles and low energy neutrons. The so-
called hadronic cascade is the accumulation of all reactions caused
by primary and secondary particles in a target. [6, 10]

The most efficient neutron production, in terms of neutrons per incident
proton, occurs with proton energies between 1 and 1.5 GeV, within which
each proton can produce 15 to 25 neutrons; such high energy levels are re-
quired because lower energy protons (in the MeV range) are less efficient,
lacking the necessary energy to trigger the multineutron cascade and evapo-
ration process. [6] This speed could be accelerated in the in-flux of protons
by the means of a plasma wakefield accelerator, wherefore, aside from its
superior sustenaibility, stems the reason for proposing the use of this kind
of accelerator.
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Regarding the neutron flux distribution: it could be shown that the num-
ber of neutrons produced by spallation is proportional to the proton beam
power P =U · I. Nevertheless, it was experimentally shown that the neutron
yield per 1W of proton beam power is almost independent on beam energy
above approximately 1 GeV. [6]

Devising the Mathematical Model.

Poisson Probability Law and the Bateman Equation. Provided that the de-
cays alter the concentration of given isotopes, these two mathematical mod-
els are inherently related as we are going to see.

A.1. The Probabilistic Model. The probabilistic model is based upon the
Poisson probability law that describes the probability as at a moment t to
be recorded k events of disintegration (in our case nuclear transmutation in-
duced by neutron-nucleus fission reactions). This probability is considered
to follow a Poisson distribution: [3, 6, 7]

P(yt = k) =
(λ t)k

k!
· e−λ t

Where:
yt = the random variable that counts the number of nuclear events (in-

volved in the general scheme of transmutation) that occur at the moment t
(t > 0) [3]

λ t = the decay constant specific to the considered nucleus
Actually, the λ t, the expected average number of events, is exactly the ex-

pected value (the means) for the random variable yt , which can be depicted
under the possibility table: [3]

yt ∼ k, pk =
(λ t)k

k!
· e−λ t

So that:

E[yt ] =
∞

∑
k=0

k · (λ t)k

k!
· e−λ t = λ t

Supposing that one considers the collection of Poisson random variables
yt (t ≥ 0) that describe the number of decay events at each moment, we
obtain a Stochastic Process (yt)t , which can statistically/probabilistically
describe the (long-term) evolution of the investigated physical phenomenon.
[3, 6, 7]

The Deterministic Model. The deterministic model is based on the Bateman
equation. This model describes the general mean of nuclide concentration
in a decay chain, and it is used therefore to predict the amount of each
isotope at a specific point in time. [6, 10, 3, 7, 8]

In order to quantify/evaluate the decay process several measures could be
introduced:
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A = the activity, the number of disintegrations per second, this value is
numbered also by the random variable yt and thus A = yt (this could be re-
lated to the phenomenon of nuclear spallation, because the number of neu-
trons procured by spallation yield to an enhanced number of transmutation
processes in the given mass of actinides and LLFPs)

N = the number of nuclei in the sample. Considering the induced decay
consists just in a first order reaction, the sample activity A is proportional to
N.

λ = the proportionality constant (the decay rate). A = λN
In addition, the activity is defined as the number of disintegrations per

second:

A =
N(t)−N(t +∆t)

∆t
⇒ A =−dN

dt
for ∆t→ 0

−dN
dt

= λN⇒ N(t) = N(0) · e−λ t

The decay constant λ is inherently related to the lifetime of the investi-
gated nucleus (τ = 1

λ
), so that the nuclear decay law can be rewritten as:

N(t) = N(0) · e−t/τ

After the time t = τ , the number of radioactive nuclei in the sample is
reduced through the constant e:

N(τ) = N(0) · 1
e

The half-life T1/2 stands for the time after which the number of radioac-
tive nuclei in a sample is reduced to half of its initial value and at T1/2, the
number of radioactive nuclei could be expressed as: [7, 3, 6]

N(t = T1/2) =N(0) ·e−λT1/2 =
1
2

N(0)⇒ T1/2 =
ln(2)

λ
= ln(2) ·τ ≈ 0.693 ·τ

Variants of the Bateman Equation in Serial and Nonlinear Decay Models.
The Bateman equation is a mathematical model describing abundancy/concentration
and activities a decay reaction, which can naturally be generalised for a
decay chain as a function of time - based on the decay rate s and initial
abundancies. It designates rather a system of differential equations, than a
single differential equation. It is rather a method for setting up differential
equations describing the chain of interest based on known properties. [8]

The Bateman equation for the two-decay chain
We are going to consider a two-decay chain - through the simplest case

of a parent nuclei feeding (by decay/transmutation) a daughter sample of
(transmuted) nuclei. [8]

The following notations will be made:
• The initial number of parent and daughter atoms: N1(0),N2(0)
• The number of parent and daughter atoms in time: N1(t),N2(t)
• The parent and daughter activities in time: A1(t),A2(t)
• The parent and daughter decay rates: λ1,λ2
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The equation for the time evolution of the parent is the same as for a
single step decay:

dN1(t)
dt

=−λ1N1(t)

The equation for the time evolution of the daughter, however, includes
a term describing daughter decay but also daughter feeding by the parents:
[8]

dN2(t)
dt

=−λ2N2(t)+λ1N1(t)

The solution for the single step decay is:

N1(t) = N1(0) · e−λ1t

By substituting this into the second equation, we obtain: [8, 7, 3, 7]
dN2(t)

dt
=−λ2N2(t)+λ1N1(0) · e−λ1t

The final solution is obtained by applying Lagrange multipliers method:

N2(t) = N2(0) · e−λ2t−N1(0) ·
λ1

λ2−λ1
· (e−λ2t− e−λ1t)

Activities of the parent and the daughter can be calculated from: [8]

A1(t) = λ1N1(t) = λ1N1(0) · e−λ1t

A2(t) = λ2N2(t) = λ2N2(0) · e−λ2t−N1(0) ·
λ1λ2

λ2−λ1
· (e−λ2t− e−λ1t)

The Bateman equation for a general serial decay chain:
The time evolution of nuclide concentration undergoing a serial linear

decay chain is governed by a set of first-order differential Bateman equation
- which extend the anterior presented case. The Bateman equations for the
radioactive decay case of nuclide series in linear chain describing nuclide
concentrations appear as a system: [8]

dN1(t)
dt

=−λ1N1(t)

dNi(t)
dt

=−λi−1Ni−1(t)−λiNi(t) for i ∈ {2, . . . ,n}

Assuming zero concentrations of all daughters at time zero: N1(t = 0) 6=
0, Ni(t = 0) = 0 for all i > 1, the concentration of the n-th nuclide after time
t was given by Bateman: [8]

Nn(t) = N1(0) ·λn

n

∑
i=1

(
∏

n
j=1, j 6=i λ j

∏
n
j=1, j 6=i(λ j−λi)

· e−λit

)
The Bateman equation for nuclear (nonlinear) transmutation chain: [8, 6,

10]
In a transmutation system, the nuclides are being transmuted also due to

interactions with the particles flux (that emerges from the accelerated proton
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beam collided spallation target). These particles being mainly nucleons, but
in the presence of a spallation target also high energy protons or pions. The
decay constants that govern Bateman equations for a decay case are then
substituted by transmutation constants.

At this point, by the transmutation constants λi j we understand the prob-
ability of the i-th nuclide production per time unit from the j-th nuclide
destruction, as a result of the nuclear interaction with the whole spectrum
of interacting particles (particularly due to the nuclear interactions with the
neutron-flux) or simply due to the induced nuclear decay.

We define:
• λ j as the decay constant of the j-th nuclide
• bd

i j as the branching ratio of the j-th nuclide decay into the i-th nu-
clide
• φneutrons as the incident neutron flux
• σi j as the cross section for production of the i-th nuclide by neutrons

during interactions with j-th nuclides [6, 10]

λ j→i = λi j = bd
i j ·λ j +

∫
φneutrons(E) ·σi j(E)dE

Where the terms: bi jd ·λ j account for the spontaneous disintegration
- characterising the phenomenon of natural-occuring decay. There-
fore in order to sustain the phenomenon of nuclear transmutation
and prevent it from collapsing into the classical long-term decay,
the decisive factor is embodied by:∫

φneutrons(E) ·σi j(E)dE

Moreover the transmutation constants appear as the coefficients of the
Bateman equations describing the general, non-linear transmutation chain
for which w nuclides as follows:

dNi(t)
dt

=
w

∑
j=1

λi j ·N j(t)

Where: N j(t) denotes the concentration of the j-th nuclide (at time t); the
constants which are not covered in the previous equations are defined using
the mass flow balance and they physically represent nuclide disintegration
rate λi j =−∑

w
j=1, j 6=w λi j; i ∈ {1, . . . ,w}

The set of equations:

dNi(t)
dt

=
w

∑
j=1

λi j ·N j(t)

Mathematically represents a system of first-order linear differential equa-
tions, the solution of a complex case be obtained as a linear superposition
of the solutions in simpler case.
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RELATING THE BATEMAN EQUATION FOR THE NUCLEAR
TRANSMUTATION TO THE INCOME FLUX OF NEUTRONS

This intrinsic link between the mathematical model for the transmuta-
tion reaction and the nuclear spallation - via the incident flux of neutrons
(that will lead us also to a formula for embedding the plasma wake-field
accelerators’ parameters) resides in/revolves around the term: [4, 11, 8]∫

φ(E) ·σi j(E)dE

Definition of the Differential Neutron Flux φ(E). φ(E) describes the distri-
bution of neutron with respect to their kinetic energy, in the form of a func-
tion that illustrates the number of neutrons at each specific energy level:
[4, 11, 8]

φ(E) = φ(E,~r, t) = n(E,~r, t) · v(E)
Where:
n(E,~r, t) is the neutron density, the number of neutrons per unit volume at

a specific position~r, with an energy E, at a time (measured in neutrons/cm2)
v(E) is the neutron velocity, directly related to its kinetic energy E by the

classical equation:

E =
1
2

m · v2

The Neutron Density n(E,~r, t). The Neutron density is intrinsically related
to the phenomenon of nuclear spallation - which actually represents the
source for these neutrons. We have to understand how the parameters of
the plasma wake-field accelerated proton beam influence the phenomenon
of spallation and thus the term: n(E,~r, t) [4, 11, 8]

The physical meaning of the terms in the integral
∫

φ(E) ·σi j(E)dE: [4,
11, 8]

• E (the integration constant) represents the kinetic energy of the in-
cident neutron, since not all the neutrons in a system have the same
energy (they exist over a wide spectrum of energies, from very slow
thermal neutrons to fast neutrons with millions of electron volts
(MeV) of energy).
• dE (the integration domain) represents the entire range of possible

neutron energies present in the system, from zero to the maximum
possible energy. It is not a fixed, universal range, but rather depends
on the specific physical environment being modeled.
• φ(E) is the differential neutron flux, which describes the density of

neutrons per unit energy at a given energy.
• σi j(E) are the microscopic cross-sections, namely the probability

of a specific transmutation reaction of the j-th nuclide into the i-th
nuclide, which can occur by neutron capture or fission occurring at
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a given neutron energy E (the cross-sections are highly dependent
on energy with large spikes at certain energies).

The physical meaning for the entire integral within the expression of the
reaction rate is that this quantity represents the macroscopic reaction rate
per target nucleus. It gives the average probability per second that a sin-
gle nucleus will undergo the specified reaction, considering the full energy
spectrum of neutrons.

This would represent the ”transmutation constant” for a neutron induced
reaction. To get the total number of reactions per unit volume per second,
this integral is multiplied by the number density of the target nuclei yielding
to the classical-like notion of:

Reaction Rate =
[∫

φ(E) ·σi j(E)dE
]
·Ni

Within this context, for the nuclear transmutation reactions, the incident
neutrons flux could be understood as similar to a ”catalyst” in the sense that
its presence hastens or favours/increases the production of new more stable
nuclides, once with the consumption of the given nuclear wastes.

The physical meaning of the terms in the integral
∫

φ(E) ·σi j(E)dE is
essential for understanding the efficiency and dynamics of neutron-induced
transmutation processes. It connects the microscopic nuclear physics with
the macroscopic engineering of spallation sources and accelerator-driven
systems.

3.1. Adapting the plasma-wake-field accelerated proton beam in order
to facilitate the Nuclear Transmutation.

We are going to witness that a collection of Poisson Random Variables,
each of them depending on the same parameter: λ not only will be enough
for describing the reaction chain ascribed by the Nuclear Transmutation, but
it will furthermore represent a limit case, whose realization we will have to
avoid.

To this end we are going to directly make use of the Reaction Rates
obtained by the Bateman-Equations for the chain of reactions - embodied
by the Nuclear Transmutation - and integrate into a broader mathemati-
cal model, broadening at the same time the embedding/integration of the
plasma-wake-field accelerated protons beam into the mathematical model.

3.1.1. Non-Homogeneous Poisson Processes (NHPP):. A counting process:
{Nt}t≥0 is called a non-homogeneous Poisson process - with the intensity
function: λ (t), whenever the following three conditions are met: [7]

i) N0 = 0
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ii) ∀)t > 0 : the random variables Nt (which constitute/make the sto-
chastic process up) are Poisson distributed, with the average: [7]

m(t) =
∫ t

0
λ (s)ds = E [Nt ]

→ The function t 7→ λ (t) being known in literature as the intensity
function (generalisation of the Poisson (constant) parameter λ )

iii) For any set of temporal-indices: 0≤ t1 < t2 < · · ·< tn:

Nt1 ,Nt2−Nt1 , · · · ,Ntn−Ntn−1

- Are independent random variables.
↓

Therefore, using the definition of the random variables’ inde-
pendence, we obtain:

P(Nt1 = k1,Nt2 = k2, · · · ,Ntn = kn)

= P
(
Nt1 = k1,Nt2−Nt1 = k2− k1, · · · ,Ntn−Ntn−1 = kn− kn−1

)
=

e−m(t1)·(m(t1))
k1

k1!
· e

(−(m(t2)−m(t1)) · (m(t2)−m(t1))
k2−k1

(k2− k1)!
· · · · · e

(−(m(tn)−m(tn−1)) · (m(tn)−m(tn−1))
kn−kn−1

(kn− kn−1)!

If one sets: λ (t)= λ ,∀)t ≥ 0, in the result, it will be obtain a regular Pois-
son process. So that the Poisson processes can be rendered as a particular
class of the nonhomogeneous Poisson processes. [7]

For a non-homogeneous Poisson Process, we can also mathematically
describe how the counted events are situated in time: [7]

For instance we can consider Sn the time of the nth occurence (event):
→ Sn is an (extended) random variable (that generalizes a Poisson

distribution) with values in [0;∞) an:

P(Sn > t) = P(Nt ≤ n−1) =
n−1

∑
i=0

em(t) · (m(t))i

i!

- If: limt→∞ m(t) = ∞, then:

P(Sn = ∞) = lim
t→∞

P(Sn > t) = 0

The density of Sn is

ρSn(t) =
e−m(t) · (m(t))n−1 ·m′(t)

(n−1)!
=

e−m(t) · (m(t))n−1 ·λ (t)
(n−2)!

, t ≥ 0

As well as the interarrival time: Tn = Sn−Sn−1 - which for a nonho-
mogeneous Poisson process (Tn)n∈1,∞ are not necessarily indpeen-
dent random variables (which generalizes the notion of an exponen-
tial random variable): [7]
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- For 0≤ s≤ t :

P(Tn+1 > t|Sn = s) = P(Sn+1 > s+ t|Sn = t) = P(Ns+t = n+1|Sn = t)

= P(Ns+t−Ns = 1|Sn = t) = P(Ns+t−Ns = 1)

= e−(m(s+t)−m(s))

Remark: notice that Sn = t depends on the non-homogeneous Poisson pro-
cess until time t⇒ hence: {Ns+t−Ns = 1} and {Sn = t} are inde-
pendent.

The nonhomogeneous Poisson processes are an instance of Markov pro-
cesses. [7]

The reason behind the option to work with Nonhomogeneous Pro-
cesses: One can render the nuclear transmutation as a chain of reactions,
each of them being described by its own reaction rate: λ (t), therefore one
can mathematically describe the nuclear transmutation by the means of a
non-homogeneous Poisson process - whose intensity functions are exactly
the reaction rates λ (t). [7, 8, 4, 11, 6, 10, 9]

Therefore, the adequate framework for describing the evolution of the
nuclear transmutation chain of reactions (in terms of counting the decay
events), is embodied by the Nonhomogeneous Poisson Processes.

- The general solution for the number of atoms of nuclide Ni in a
linear decay chain is:

Nn(t) = N1(0) ·Πn−1
i=1 λi(t) ·

n

∑
i=1

e−λi(t)

Πi
k=1,k 6=i(λk−λi)

⇒ The long-term behaviour of λn(t) depends on the relationship be-
tween the decay constants in the chain:

- So that, supposing: λ1 << λ2,λ3, · · · - which corresponds to the
case where the parent nuclide N1 has a much longer half-life (a
much smaller decay constant), than all its daughter products, the
system will eventually reach a state of secular equilibrium - with-
outh having attaining the β−stability.

⇒ Nevertheless, this case should be avoided by any means, because
our goal is to hasten the decay of a long-lived parent nuclide and
transform it into a stable or short-lived product; in fact we are
trying to extinguish the long lived parent.
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– Assuming that we describe the nuclear transmutation in terms
of a non-homogeneous Poisson Process, the secular equilib-
rium could be understood/rendered as a limiting case - embod-
ied by a Poisson process - obtained as a state of assymptotic
stability.

↓--→↓
This could be achieved by Neutron bombardment - which effec-
tively yields the nuclear transmutatioin.
In fact, the development of the nuclear transmutation depends upon:

The high flux of neutrons - that result through the nuclear
spallation phenomenon and feeds the nuclear transmutation
↓

As we have already seen the reaction rates could be expressed
as functions depending on the flux of neutrons, on the other
side, this functional expression also englobes the cross-section
σ (the probability of nuclear interaction).
And the cross-sectionss depend on the energy of the neutron in-
flux ⇒ therefore, achieving the goal of nuclear transmutation
also depends upon maintaining a broad spectrum of neutron
energy spectrum.

→ Maintaining a broad spectrum of neutron energy spectrum
could be achieved by controlling the proton beam energy

⇒ The neutrons’ energy inherently depends upon the speed of the
incident accelerated proton beam, therefore attaining a broad
neutron energy spectrum could be achieved by controlling (chang-
ing - modulating the speed of the accelerated protons).

⇒ The arrising question resides in how could one modify the
speed of the accelerated protons within the Plasma-Wake-
field Accelerator?

⇒ A series of articles propose as solution the use of plasma den-
sity perturbation as a mean of controlling the particle accelera-
tion.

⇒ As a solution for preventing the non-Homogeneous Poisson process
associated to the transmutation-Bateman chain of equations from turning
into a classical Poisson process (which embody the model for the long-term
decay), the authors of the article propose the speed control for the plasma
wake-field accelerated proton beam, since in this way, a broader energy
spectrum of spallated neutrons could be achieved, leading to a full coverage
of the LLFPs fission threshold.

In order to achieve this aim the authors propose the adapting of the plasma
wake-field accelerator the authors of the present article propose the fol-
lowing strategy:

- In order to prevent the transmutation chain to turn into a long-term
decay for the LLFPS, the spallated neutron flux should have a main-
tained broad spectrum.
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- Since the spallation (dislocation of the neutron from the Tungsten
target) inherently depends upon the in-flux of accelerated protons,
the energy of dislocated neutrons automatically inherits the momen-
tum impressed by the colliding proton.

- Therefore the authors propose as solution the control of the pro-
ton beam energy, in the sense of inducing a broad energy spectrum
for the proton beam, which could be obtained by making use of
the particle wake field accelerator - by the means of the frequency
modulation within the plasma wake-field accelerator.

- At this point, it is required to return at the mechanism behind the
plasma wake-field accelerators, where an ultra-fast laser pulse (the
witness beam or the driver beam) induce the plasma wake-fields,
which accelerate the injected particles (in the present case, the ac-
celerated protons). Given this mechanism, a frequency modulation
could be indirectly induced for the accelerated proton beam by op-
erating through the driver ultra-fast laser pulse. [12, 14, 2, 15]

- By frequency-modulating the drive ultra-fast laser pulse for the wake-
field plasma accelerator, the proton beam will authomatically inherit
a modulation of their frequency, which will be further transfered
into the multifarious energy spectrum of the spallated neutrons.

⇒ The phase or frequency modulation techniques for plasma ac-
celerated particles are well established [12, 14, 2, 15], neverthe-
less there was no article which to propose this technique as a
solution for maintaining/feed the chain of nuclear transmuta-
tion of LLFPs.
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A RESEARCH ON THE POSSIBILITY TO SAFELY USE THE
RAMAN SPECTROSCOPY IN-VIVO
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’Traian Lalescu” Center for Research and Training in Innovative Techniques of Applied Math-
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ABSTRACT: The present article investigates the required conditions for the safe intra-operatory
use of an alternative approach to achieve a better intra-operative conduct of the Raman spectroscopy
by using optical solitons. The article briefly presents the principle of the Raman spectroscopy as well
as its limitations. In order to surpass the barrier embodied by the limited amount of back-scattered
photons and grant more accuracy to Raman spectroscopy, the authors proposed as alternative the
use of ultra-short soliton pulsed laser instead of a classical (continuous wave) laser. This strategy
does not constitute in itself an element of originality, since there exists numerous references to the
conjoined use of Raman spectroscopy and the ultra-fast solitonic-pulsed laser, yet to the best of the
authors’ knowledge, there is still none article to assess the potential risk this method might pose to
the human health when used in-vivo.
In order to attain a better insight of the ways to avoid any potential risk against the human safety, the
authors, revised the theory of solitonic pulsed laser signals based at core on mode-locking in order
to produce the characteristic balance between the Kerr-nonlinearity and dispersion. The article also
offers a survey of the most prominent risks of laser-tissue interaction and also expresses the underly-
ing relation between these risks and the way how they get reduced just to the interplay between the
photothermal and photochemical effects.
The amount of energy released by the laser and thereafter converted by exposure into heat leading to
the damaging effect of tissular overheating is described by the Pennes bioheat equation. Therefore
the authors verified whether the Lyapunov stability of this could be obtained as a variation of the
heat equation depending upon the laser’s parameters. Nevertheless, in result, it was obtained that
regardless of the initial conditions adjustment, the Lyapunov stability is impossible to be achieved.
Therefore the authors had to devise a new strategy for preventing the occurrence of the photother-
mal and photochemical adverse side-effects. This strategy relies upon the pulsed very nature of the
solitonic laser signal and the adjustment:

• interpulse duration - larger than the vibrational relaxation (which prevents the free radicals
generation)

• the duration of each pulse, chosen to be less than the time required for overheating of the
tissular structure.

The chosen frequency spectrum interplay with the laser’s energy also plays a crucial role as the
calculations undergone for a concrete study case reveal in the last section of our research.
As a conclusion, the authors found that by adapting the laser’s parameters according to the above
mentioned strategy could grant both scientific accuracy and the avoidance of harmful impact upon
the clinically-exposed patients for the Raman spectroscopy used in-vivo.

Key-words: Raman Spectroscopy, Solitonic ultra-short pulsed lasers, laser-matter interaction

side-effects and risks, Bio-heat equation’s stability

1. INTRODUCTION

Raman spectroscopy grants the possibility to fully classify substances
- ranging from molecules to biological tissues or crystal structures based
upon their vibrational modes. [8, 6] Therefore foreboding promises of
this technique in the field of cancer prevention and intra-operative guided
surgery have aroused a great interest in the last 25 years, numerous medical
articles record the need for further in-vivo investigation tools, particularly
in the malign-tissue identification - both in clinical exams and in surgery;
more precisely Raman spectroscopy was designated as a tool to respond to
the need for diagnostic tools for biopsy guidance for early diagnosis of (pre-
)malignant, surgery guidance, which can be used intra-operative assessment
of resection margins to achieve adequate tumour resection. [7, 9]

Moreover that fibre-optic probes have enabled the use of Raman spec-
troscopy for in vivo clinical applications. The integration of Raman spec-
troscopy with other diagnostic techniques has been a major step in the de-

velopment towards improved efficiency in biopsy guidance and early cancer
diagnosis, as numerous articles pointed out [7, 9]

Nevertheless none of these articles thoroughly investigated both the limi-
tations of the Raman spectroscopy usage in-vivo, and the side-effects asso-
ciated to the laser-biological matter interaction, therefore the authors under-
gone a research exclusively on the laser’s mathematical model to acchieve
the by-passing of any risk against the human safety for Raman spectroscopy
used in-vivo.

2. METHOD LIMITATIONS AND THE USE OF THE ULTRA-SHORT
SOLITONIC PULSES

At the outset, the authors have focused on the theoretcal foundations of
the wave propagation, including the problem of solitonic ultra-short pulses’
generation, required for an in-depth investigation of the Raman spectroscopy

1
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mechanisms.
Raman spectroscopy takes advantage of the fact that for each chemical 

sample is uniquely characterise by the frequency νprobe of its vibrational 
modes. [8, 6, 12, 1]

A laser pulse is emitted towards the sample. Supposing that the laser’s 
electromagnetic frequency ν matches the samples frequency, a phenome-
non of interference or absorption takes place. [8, 6, 12, 1]

At the same time, this interactions also leads to the transformation of 
th sample’s molecular structure into a dipole, whose oscillatory/vibrational 
motion can lead to the (inelastic) back-scattering of the initial laser pulse 
with a modified frequency: ν − νprobe,ν + νprobe.

More precisely, the detector is an interferometer that records the signals 
that return after contact with the sample - through the phenomenon of re-
flection - Raman scattering: [8, 6, 12, 1]

• Amodi f ied · cos(2π(ν −νi)t) - stands for the Stokes-shifted Raman
scattering where the scattered light has a frequency lower than the
incident light by νi

• Amodi f ied · cos(2π(ν +νi)t) - stands for the anti-Stokes shifted Ra-
man scattering, where the Amplitude of the scattered light has a
frequency higher than the the incident light by νi.

Where: A = 1
2

∂α

∂qi E0qi
0 stands for the amplitude of the spreaded

Raman wave.
Thus the received signals, once subjected to the Fourier trans-

form: [8, 6, 12, 1]

F [s] (ν) =
∫

∞

−∞

s(t)e−i2πνtdt

→ grant us the frequency for any received signal: [8, 6, 12, 1]

SStokesRaman(t) = F [A cos(2π(ν −νi)t)] = ν −νi

Santi−StokesRaman(t) = F [A cos(2π(ν +νi)t)] = ν +νi

- By the substracting from these terms the initial frequency ν , one
obtains: {νi}i the vibrational modes for the substance that repre-
sents the sample probe. [8, 6, 12, 1]

Neverthless, the following problem arises: only a tiny fraction of
the signal (10−17) interacts with the molecular sample and becomes
Raman Scattered. The information about/regarding the vibrational
frequencies of the molecule is difficult to retrieve even if the detec-
tor is high-performance. [8, 6, 12, 1]

One proposal/approach to solve this problem would be to emit
the electromagnetic signal (wave/radiation) in the form of a soliton.

To surpass the limitations of typical Raman spectroscopy (the low
fidelity due to the tiny fraction of the signal that interact with the
sample), the authors have investigated as alternative using as laser
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beam for the Raman spectroscopy a solitonic pulse; therefore the
authors had to examine the procedure for generating the ultra-short
solitonic pulses within the laser cavity using the environment (gain
medium) Ti:Sapphire’s birefringence to achieve control between the
anomalous dispersion of the group velocity and the self-phase mod-
ulation, leading to the non-linear Kerr effect.

The key role in this procedure is assigned to the self-phase mod-
ulation [13], which inherently deals with the pulse amplitude A(z),
solution of Schrödinger equation: [13]

dA
dz

=−iγ|A(z)|2A(z)

Where the power of the electric signal is constant (does not vary)
along the axis of propagation of the electric field, the Oz axis: [10,
13, ?] d|A|2

dz = d(AA)
dz = dA

dz A+AdA
dz = 0, turning the Schrödinger equa-

tion exactly into a Korteweg de Vries equation (whose solution is
the soliton wave).

where γ is a constant, defining the environment/gain medium
within the laser cavity (resonator)
and z is the uni-dimensional laser propagation axis

Since the power is invariant (a constant), the Kerr effect manifests
itself only in terms of phase (in the form of a phase rotation): in
terms of polar coordinates: A=|A|eiϕ =⇒ d

dz |A|e
iϕ + i|A|eiϕ dϕ

dz =

−iγ|A(z)|3eiϕ ; where: dϕ

dz =- γ|A|2=¿the phase function ϕ calcu-
lated in the z coordinate will therefore be: ϕ(z) = ϕ(0)− γ|A(0)|2z
the factor describing SPM (this relationship illustrates that SPM is
induced by the electric field strength). [10, 13]

In the presence of an attenuation factor, the propagation equa-
tion is: dA(z)

dz = −ϕ

2 A(z)− iγ|A(z)|2A(z) and the solution will be:

A(z)=A(0)e−
ϕ

2 ze−iγ|A(0)|2le f f (where le f f (z) =
∫ z

0 e−αzdzis the ef-
fective length) - which is exactly the equation defining a soliton.
[10, 13, ?]

The generated ultra-short solitonic pulse laser beam is extremely
powerful and can sustain an increased rate of anti-Stokes Raman
back-scattering, making thus the procedure more efficient even when
used in-vivo.

But which is the cost in terms of side-effects and human safety
risks? Could this risks be avoided?

3. HUMAN SAFETY CONCERNS

In spite of the enthusiasm granted by the academic environ-
ment to the possibility of applying in-vivo the Raman spectroscopy,
there exist several issues related to it.
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The first issue resides in the method’s low fidelity, due to the min-
imal fraction of (anti-)Stokes shifted photon that are backscattered
- when the method employs an usual laser. In order to enhance the
method’s accuracy, the authors proposed the use of a solitonic ultra-
fast femtosecond-pulsed laser (due to well-established properties of
stability specific to the solitonic signals).

Nonetheless, there still remains a series impediments against em-
ploying in-vivo the method of Raman spectroscopy. For instance,
there exist numerous articles which propose the (picosecond) soli-
tonic lasers as a mean for surgical treatments. This means that such
solitonic pulsed-lasers could exhibit harmful potential against the
human health. Why do such side/adverse effects take place? Could
these adverse effects be diminished or even by-passed?
Therefore the authors closely examined the potential harmful side-
effects associated to the tissue-(solitonic pulsed) laser interaction:

The high-power ultrashort lasers can lead to the formation of the
following adverse effects through interaction with biological tissue:
[5, 11, 3, 2]

– Photochemical effect
– Photothermal effect
– Photomechanical effect
– Ionization phenomenon (plasma formation)

However, it will be shown that the photomechanical effect es-
sentially boils down to the photothermal effect and the ionization/plasma
formation phenomenon, which in turn is closely related to the pho-
tothermal effect. [5, 11, 3, 2]

Risks of in vivo use on human health:
In order to increase the accuracy of the method and favour the

generation of photons scattered with the Stokes or anti-Stokes Ra-
man frequency shift spectrum, we proposed the use of a solitonic
laser signal (a much more powerful and stable signal, which, as we
shall see, will favour the generation of anti-Stokes shifted Raman
photons).

However, this modification also poses risks to human health due
to adverse effects adverse effects on benign tissue examined in vivo.

Let us recall that the phenomenon (Raman) of laser signal scat-
tering is a consequence of the oscillation of the molecular sample
with which the incident laser beam interacts, because the electro-
magnetic wave modifies the oscillation polarizability.

Molecular vibration is generated by the dipole pulse: [8, 6, 13, 5,
11, 3, 2]

p(t) = α ·E(t) = α ·E0 · cos(2πνt)
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And from Taylor’s formula (applied for polarizability α viewed
as a function of spatial coordinates):

p(t)≈ α(q0)E0 · cos2πνt +
1
2
· ∂α

∂qi |qi=q1
0
E0 ·q1

0 · (cos(2π(ν −νi)t)+ cos(2π(ν +νi)t)

In other words, the molecular vibration of the sample depends on
p and indirectly on the intensity E(t) of the incident beam.

The higher the energy of the incident laser beam, the greater the
accuracy of the method, but the adverse effects will also become
significant.

There are two fundamental adverse effects that can damage be-
nign tissue (when Raman spectroscopy is used in vivo) and thus
endanger human health (causing other conditions, including genetic
mutations and diseases), namely: [13, 5]
Photothermal effect:

• When photons/electromagnetic waves come into contact with
the molecular substrate being examined, the energy transferred
by the photons changes the molecular vibration movement, and
this movement releases heat.

• Furthermore, the greater the amount of energy transferred (and
thus the heat released), the more pronounced the unfolding of
the constituent polymers of the tissue will be, up to the level of
protein aggregation; resulting in structural changes, culminat-
ing in cell lysis (death) and ultimately irreversible tissue dam-
age. [5]

Photochemical effect:
• The energy transferred by photons leads to chemical changes -

for example, changes in covalent bonds - through which oxida-
tive products (RXs = intermediate oxidative products, e.g. free
radicals) are released. [5]

• This contributes to the phenomenon of protein oxidation, and
the induced changes can also lead to genetic mutations

• The photochemical effect is also due to laser irradiation (the
intensity applied by the laser per unit area).

• Intuitively, the photochemical effect of photons is, on a lower
energy scale, perfectly similar to the interaction between UV
radiation (ionising radiation, e.g. gamma radiation), which also
causes genetic mutations by breaking protein bonds in genetic
material (DNA). [5, 11]

As a result, the Raman spectroscopy method can only be used in
vivo to the extent that ways can be found to avoid photochemical
and photothermal effects; this is precisely what we propose in this
article.

But first, we need to discover how these phenomena are de-
scribed mathematically:

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

69



Mathematical description of the photothermal effect:

The mathematical description of the photothermal effect is car-
ried out on several levels: [5, 11, 3, 2] I. Firstly, the way in which
the energy radiated by the laser signal incident on the tissue surface
is converted into heat (by the vibration of the electronic cloud at
the cell surface of the tissue) and then assimilated/absorbed into the
depth of the tissue.
- The process of heat transfer at the tissue level is governed by an
EDP, called the Pennes Bioheat Equation formula [3, 2]
- In order to derive the Pennes Bioheat Equation, it is necessary to
take into account the laws of thermal/caloric energy conservation at
the tissue level.
- The thermal energy balance in a volume/reflection of tissue is gov-
erned by the following conservation formula: [3, 2]

Qgain = Qstorage+Qloss+(W= QB) , where:

– Qgain = rate of assimilation/accumulation (gain) of heat, by cu-
mulating all energy phenomena.

– Qstorage = heat stored by the tissue
– Qloss = the lost at boundary heat
– W= QB = the heat generated by the metabolic processes at the

level of constituent tissular cells [3, 2]
In order to model by the means of an equatioin this energetical

formula, we have to divide the tissue into blocks of infinitesimal
volume (actually we discretise the tissular strate exactly as in the
case of an integration problem or a problem of numerical computa-
tion). [3, 2]
- The heat propagation/transfer at the level of the infinitesimal tis-
sular volume/region - which is realized in two forms (through the
following two phenomena): [3, 2]

– through the conduction phenomenon: which implies that at
the level of the considered tissular region, the gradient of tem-
perature (the difference in temperature) is responsible for the
flow propagation from the zone where a surplus of thermal/caloric
energy exists to regions where the temperature has lower val-
ues.

– And through the convection phenomenon: which involvees
that the caloric energy (the heat) is carried further once with
the passing of the blood. [3, 2]

- The conduction phenomenon of heat is deemed at the sectional
level of the considered region/volume:
- And it is mathematically modeled by the Fourier law of heat
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conduction:

Q =
−k ·A · (T2 −T1) ·∆t

∆L
- The flow of heat is the transfer rate of heat per area unity per the
time unity, according to the formula: [3, 2]

f =
Q

A ·∆t
⇒ f ( (the heat flux vector )) =−k · (T2 −T1)

∆L
⇒ f =−k ·∇T

∆L
, where:

– k is the coefficient of thermal conductivity [3, 2]
– the magnitude ∇T is equal to the change in temperature per the

length/distance unity.
– ∆L is for simplicity approximated to the distance/length mea-

surement unity: ∆L ≃ 1
⇒ f ≃−k ·∇T
↓

ρ ·Cp ·
∂T
∂ t

= ∇ · (k∇T )+Qheat generated by other sources at the tissular level

- With: ∇ · (k ·∇T ) = ∇ · f is the heat conduction term.
- In other words, the temperature variation in time is equal to the
quantity of (thermal) energy which pass through the system: ∇ ·
(k∇T )
- at which is added the caloric energy generated by metabolic pro-
cesses (QM) and the caloric energy carried by the blood through
the tissue (QB) - which is due to the heat convection phenomenon:
[3, 2]

QB = wB ·CB · (TB −T ), where:

– wB represents the blood perfusion (the volume of blood which
passes through the respective tissular region during the unity of
time)

– CB represents the blood capacity to carry/store caloric energy
– TB, also denoted as Ta, is the blood specific temperature.

⇒ By gathering together all these data, we obtain the Pennes Bio-
heat equation - that illustrates/describe the transfer of heat through
the tissue: [3, 2]

ρ ·Cp ·
dT (⃗r, t)

dt
= ∇ · (k∇T (⃗r), t)+(QB = wB ·CB) · (Tα−T )+QM +QP, where:

– CP is the tissue’s capacity to store caloric energy.
– QP is the volumetric rate of laser caloric energy deposition

(within the tissue).
In fact, QP is the term that describes the photothermal effect in-

duced by the laser pulse over the tissue.
Namely, the laser irradiance is the measure for the caloric energy

transferred/deployed/deposited by the laser per the unit contact area
between the laser and tissue.
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⇒ The absorption of photons’ energy generates/yields to the vol-
umetric heat source - described by the factor QP; this terms could
expressed as a function - that depends upon: [3, 2]

– the Irradiance
– the absorption coefficient specific to the exposed tissue, µa
– and the spatial distribution within the tissue (because the QP

value decays exponentially once with the departure from the
tissular surface).

⇒ Therefore, it is the term: QP the one that embeds the laser’s
irradiance (”the squared amplitude”) within the mathematical
model. II. Another level of assessing the photothermal effect con-
sists in the assessment of the thermal relaxation time (the time re-
quired that once with the end of the pulsed laser action, the tissue’s
temperature to decrease by 37%). [3, 2, 5, 11]
- The thermal relaxation time does not explicitly appears within the
Heat Bioequation.
- Nevertheless, the underlying principles are embedded into the Pennes
Heat Bioequation through the presence of:

– the conduction term: ∇ · (k∇T )
– and the volumetric capacity of heat storage ρ ·CP.

- Once the pulse influence is stopped (QP = 0), the temperature dis-
tribution/profile within the tissue will authomatically decrease.
- The rate of decay for the temperature spatial distribution is gov-
erned by the formula:

α =
k

ρ ·Cp
for the thermal relaxation time

- Smaller the value of this coefficient is, the smaller the required
time for the exposed tissular region to get colder is, and conse-
quently the tissue returns faster to its normal temperature.

The photothermal effect and its linkage to the Ionization Phe-
nomenon

At the outset, we will introduce the basis of the Photothermal ef-
fect and thereafter we will defien the way how the photomechanical
and ionization phenomena are related to it. [5, 11, 3, 2]

The basis of the photothermal effect resides in the fact that the
energy carried by the photons of the laser signal is absorbed by the
chromophore molecules in the tissue cells.
- For example, water, hemoglobin, and melanin absorb photons of
specific wavelengths specific to each of these molecules.
- The occuring problem is that the wavelength of the signal at which
absorption occurs varies depending on the chromophore -¿ the ab-
sorption spectrum is very broad -¿ which requires difficulty in deter-
mining an appropriate wavelength for the laser signal so as to avoid
absorption of the laser signal by any of the chromophores present in
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the tissue.
- The energy of the photons absorbed by the chromophores is con-
verted into heat, which can lead to: [5, 11, 3, 2]

– Coagulation: at temperatures of approximately 60◦C or higher,
protein denaturation and tissue contraction will occur (one can
also take beneficially advantage of this effect, for instance to
produce hemostasis in the case of hemorrhage).

– Evaporation: rapid heating of water molecules in tissue to tem-
peratures above 100◦C can cause the molecules to evaporate
from the tissue.

– Carbonization: sudden heating to extreme temperatures above
100◦C will burn/carbonize the affected surface of the tissue.

- On the other hand, it is precisely the evaporation, or more gener-
ally, the thermal expansion of water molecules in tissue—that gen-
erates: [5, 11, 3, 2]

– Shock waves
– Or even micro-explosions

at the tissue level, which pulverize/remove portions of the tis-
sue surface

- This phenomenon is also known as ”ablation” and represents the
main mechanism of the photomechanical effect.
- In fact, the ablation designates the process of photomechanically
removing material from the surface of a solid medium by irradiating
it with a laser signal.
- This principle serves as the basis for the laser machining. [11]
→ Therefore, at a microscopic scale, there exists the risk that due
to the photothermal associated to the Raman spectroscopy, pho-
tomechnical corrosion of the tissular structures to appear.
⇒ Thus the photomechanical risks are themselves consequences
of the photothermal effect (in particular of evaporation induced
by the photothermal effect).
- Another contribution to the phenomenon ”tissue abblation” is rep-
resented by the ionization/plasma formation.
Why does this happen? [11, 5]

- Plasma formation represents the further step beyond he pho-
tothermal evaporation.

- More precisely, if the temperature induced by exposing the tis-
sue to the laser signal is above the temperature of 100 Celsius
degrees, evaporation occurs.

- Thereafter, the resulted molecules in a gaseous state are further
ionized by the laser signal (their electrostatic profile is modi-
fied). The ionized gaseous medium is plasma.
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- It should be also remarked that for a sufficiently powerful laser,
the intermediate evaporation step is not even necessary, as ion-
ization (change in the electrostatic charge profile) of the liquid
medium occurs directly.

- Furthermore, the generated plasma can act corrosively on tissue
surface - due to the ablation.
- Because the amount of plasma produced expands rapidly and gen-
erates (due to electrostatic repulsion mechanisms) shock waves and
micro-explosions/cavitation bubbles - which break/erode the tissue
surface - thus leading to ablation.
- The root of both phenomena stems in the laser irradiance (the radi-
ation flux carried by the laser per unit area of tissue surface); more
precisely:

– If the laser flux has low values, the material is only heated (the
absorbed laser energy will lead to evaporation, but not neces-
sarily to ionization).

– on the other side, If the laser flux is very strong, then plasma
will form on the exposed surface of the tissue (and automati-
cally ablation).

- Therefore avoiding these side-effects depends on the possibility to
control the laser enegy (and inherently its frequency)
- For a pulsed laser, this concerns to the laser flux, also called flu-
ence, which represents the amount of energy carried/transferred by
the laser pulse per unit area of the exposed surface: [5, 11, 3, 2, 10,
13]

I f luence =
E(energy of the pulse)

A(area of exposed surface)
=

h̄c
λ

· 1
Alaser

- In fact, when choosing the frequency value, a balance must be
struck between: - The value prescribed by the fluence limitation
- and avoiding/reducing the phenomenon of absorption (photother-
mal) and heat generation,i.e. temperature increase.

Another issue we have to focus on is whether the amount of
generated heat and the temperature values (which we have seen
must be kept below the threshold of 60 degrees Celsius, ideally close
to the homeostatic temperature of the human body) could be con-
trolled solely on the basis of the fluence (and automatically the fre-
quency) of the laser signal?

To address this issue, it is enough to return to the so-called Pennes
Bioheat equation:

ρCp
∂T
∂ t

= ▽× (k▽T )+wBcB (Ta −T )+Qm +Qp
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- The contribution of the laser to heat generation (in fact the only
”exogenous” factor that intervenes in the physiological pro-
cesses of the human body in generating heat at the level of the
exposed tissue) is encoded by the factor: Qp - the heat per unit
volume of tissue exposed to the laser signal (QP stands for the
volumetric absorption rate of the caloric energy due to the inter-
action with the laser), which at its turn is dependent on the laser
parameters, more precisely on the laser’s irradiance: I(⃗r, t):

Qp (
−→r , t) = µa (

−→r ) · I (r, t)
→ At the tissular surface, I(⃗r, t) might be expressed in terms of

the fluence in the following way:
- We consider that the pulse emission duration is τP and

the contact area between the pulse and the tissue is Alaser

Energy of the pulse = Ifluence ·Alaser

↓
- Average laser power at the contact surface during pulse

emission:

Pmedie =
E
τP

=
I f luence ·Alaser

τP

- The average laser intensity during contact/exposure will
be:

Iaverage =
Paverage

Alaser
=

I f luence

τP
=

1
τP

ℏc
λ ·Alaser

⇒ Qp (⃗r, t) = µa (⃗r) ·
ℏ · c

λ ·Alaser
· f

(⃗
rspatial

)
·g(ttemporal)

The terms f (⃗rspatial),g(tspatial) account for the (spa-
tial and temporal) dissipation once with the photons’
advance within the depth of the tissue.

4. STRATEGIES FOR AVOIDING THE RISKS/ADVERSE EFFECTS
FOR THE HUMAN HEALTH:

In order to reduce (up to the order of avoiding) the adverse
risks presented in the precedent section, we are going to employ a
broader strategy, that imbines several facettes:
SI. At the outset, we are going to investigate the (Lyapunov) sta-

bility of the Pennes Bioheat equation.
- We have seen that laser’s contribution to the increase of

temperature in the exposed tissue could be mathemati-
cally modeled through the presence of the factor QP within
the Pennes Bioheat Equation.
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- Furthemore, this factor could be rendered also as a func-
tion of laser’s frequency QP(λ )

- And we are going to assess the long-term evolution of the
Bioheat equation by the means Lyapunov stability with
respect to the QP factor.

SII. We will also directly make use of the defining properties for
the adverse effects related to the laser-tissue interaction. Our
strategy consists in adapting the laser parameters in order to
reduce or even by-pass the generation of adverse effects.

SIII. Another possibility to investigate is in what conditions, the so
called Raman anti-Stokes frequencies could induce a cooling
effect (nevertheless due to its association with the fluorescence,
this thread of research goes beyond the scope of the present
article).

4.0.1. SI. Lyapunov stability for the Pennes Bioheat equation. At
this point, we employ the Lyapunov stability results specific to the
heat equation in the study of the Pennes Bioheat equation. We attain
this goal simply noting that by choosing the scalar field: [2]

L[·] = ∆
2·= ∆ ·∆·

we retrieve the expression of the classical heat PDE exactly under
the guise of a linear system:

du
dt

= L [u]⇔ du
dt

= ∇ ·∇u = ∇
2u = ∆u

The only difference (particularisation) for the Pennes Bioheat equa-
tion resides in the presence of the additional positie constants: ρ,k,CP,QB =
CB ·wB,QM,QP (which are physically relevant, yet ρ,k,Cp,QB,QM,QP),
but from the mathematical point of view do not embody a barrier in
employing the tools of stability theory):

ρ ·Cp ·
dT (⃗r, t)

dt
= ∇ · (k∇T (⃗r), t)+(QB = wB ·CB) · (Tα−T )+QM +QP

- We have to readjust the form of the Bioheat equation into a proper
way, in order to make apparent the initial condition (the equilibrium
point).
- To this end, we have to observe that the factor QP which accounts
for the laser-tissue interaction represents the solely influence exter-
nal to the typical tissular environment.
- In addition, the term QP could be rendered as a function of λ (the
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solitonic pulse frequency) - and thus stands for a variable that cu-
mulates the lasers’s effect:

QP(λ ) = µa(⃗r) · I(⃗r, t) = µa(⃗r) ·
h̄ · c

λ ·Alaser

and take into account that in the absence of the external laser influ-
ence/source, the the only sources of heat-generation are QB ·Tα ,QN
- Thus, we can re-express the Pennes Bioheat Equation under the
guise of a PDE with initial conditions:

ρ ·Cp
∂T
∂ t

= k ·∇2T +QB · (Tα −T )+QM +QP

T (t0,⃗r) = QB ·Tα +QM

→ Because at the initial moment (let it be denoted as: t0), the
share/contribution of heat (the rate of heat-deposition/absorption)
is due only to the intra-tissular metabolism QM and to the blood
perfusion QB.

For the sake of the mathematical description and ease of the math-
ematical description, let us denote by:

– C1 = QB ·Tα +QM
– C2 = QP

⇒ Thus we re-express the equation as:

∂T
∂ t

= k ·∇2T +C1 +C2

T (t0,⃗r) =C1

The implementation of the stability theory tools involves the follow-
ing steps:
Step1: In order to apply the classical results of the stability theory,
we have to ”veil” (remove) the additional constants C1,C2:
→ By defining a new function instead of T (⃗r, t), say:

(⃗r, t) = T (⃗r, t)−C1 · t −C1

↓ This transformation is chosen specifically to make the new equa-
tion homogeneous and to simplify the initial condition:

∂t ת! = ∂tT −C1

ת!∇ = ∇T ⇒ ∇
2 ת! = ∇

2T
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↓ Substituting these expressions into the modified heat equation,
we obtain the new problem:

∂t ת! = ∇
2 +C2

t)ת! = t0,⃗r) = 0

The initial condition takes this form because:

(t0,⃗r)ת! = C1+(t0,⃗r)ת! =C1 −C1 = 0.

Step 2 Investigate the stability in terms of C2:
- The stability of the original equation for T (t ,⃗r) is utterly/absolutely
equivalent to the stability of the transformed equation for .ת!
- The equation: ∂t ת! = ∇2 C2+ת! is a linear PDE with the constant
source term C2
- It is obvious that there exists the trivial solution:

t)0ת! ,⃗r) = 0 = the initial condition for the PDE defining t(∀,ת! ,⃗r
⇒ The initial condition 0 is an equilibrium point.

- Under these auspices, the stability of the PDE refers to whether
over long time: t)ת! ,⃗r) remains close to 0 (and thus T stays close to
QB ·Tα +QM) so that the temperature falls back to the normal values
regardless of small variations of the variable QP.
⇒ The assessment will depend upon the source term C2.
Remark It is a simple calculation which shows us that a partiular
solution for this equation is represented by: particularת! =C2 · t
⇒ The full solution will be:

,r⃗)ת! t) =heat (⃗r, t)+C2 · t

where: heatת! (⃗r, t) is the classical heat equation’s solution:

∂t ת! = ∇
2 ת!

(which could be obtained for instance by applying the Fourier Trans-
form Method).
- However heatת! is stable, due to the maximum principle for the
Heat Equation.
- And assuming the behaviour for: ,r⃗)ת! t) as t→∞−−−−−→ 0

∥ ,r⃗)ת! t)−0 ∥=∥ ,heat(⃗rת! t)+C2 · t −0 ∥≤∥ ,heat(⃗rת! t) ∥+ ∥C2 · t ∥−−−→t→∞
0+(∞ =∥C2 · t ∥)

⇒ The solution ת! could by no means be stable.
Remark: Supposing that C2 · t would be negative, which involves:
C2 < 0
⇒ It could be shown that the source term would act as a ”sink”

leading to the phenomenon of dissipation and thus the PDE is
stable.
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– Nonetheless, we simply dismiss the case: C2 < 0, since in our
context, where:

C2 = QP = µa(⃗r) · I(⃗r, t) = µa(⃗r) ·
h̄ · c

λ ·Alaser
(≥ 0)

→ which represents the laser energy absorbed and converted into
heat by the tissue, therefore this quantity could not take nega-
tive values.

The Pennes Bioheat Equation will definitely be unstable in the pres-
ence of the laser (interaction with the tissue) and it is not possible
to find any way for stabilizing the Pennes Bioheat Equation.
⇒ Since QP is a nondecaying, constant, positive source of heat in
the tissue and the energy is continuously added; the only barrier
is embodied by the interaction duration. → In practice t→∞, yet:
QP = 0, for t < τinteraction denoted as τp However even during
a finite-temporal interaction, the PDE remains unstable, because
even over any interval [t0; t0 + τP]: ∥ ,r⃗)ת! t −0 ∥ could be made big-
ger than ε , regardless of how close is ,r⃗)ת! t0) to the initial condition
0 (so regardless of any choose of δ ).

The only chance for maintining temperature as close to the nor-
mal values as possible cuts back to adapting the interaction/exposure
time (due to the intervention of the dissipation of the excessive tem-
perature).

4.0.2. SII. Adapting the laser parameters to attain the avoidance of
the adverse effects for the Raman Spectroscopy:

In order to reduce/diminish at once both the photothermal and
the photochemical effects (that can occur once with the application
in-vivo of the Raman spectroscopy), we are going to take advantage
of two essential properties associated to these effects, namely:

– For the photothermal effect, the property which we are go-
ing to use is embodied by the thermal relaxation time of the
molecules

– For the photochemical effect, the property which we are going
to use is embodied by the average lifetime of the intermedi-
ate reactive/oxidative products.

The authors propose as strategy to link these propertie to the
discontiuous character of the solitonic pulsed signal emited by the
laser in the following way:

– If the intermediate duration (the temporal gap) between the
emission of the pulses will be ”sensibly” bigger than the
thermal relaxation time/duration, then the molecular layer
will have enogh time ”to get cold by itself (without any exter-
nal intervention).
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– Moreover, if the efective duration of each pulse is compa-
rably less than the average lifetime of the intermediate re-
active/oxidative products, then these products will not have
enough time to get formed.

- More precisely, by inducing energy through photons grouped
in extremely short pulses (it would be adequate a soli-
tonic laser signal formed from pulses in the order of pi-
coseconds or even femtoseconds), then will be gener-
ated/produced intermediate reactive/oxidative products;
however, if each of signal’s pulses ends before the in-
termediate oxidate/reactive products to have had enough
time to built up or to undergo further reactions - which
can lead/yield to irreversible deterioration of the tissu-
lar cells, and the temporal gap between each consecu-
tive pulses of the signal will be large enough, the reactive
products can dezintegrate/decay by itself or can even get
involved in ”benign” reactions (for instance the interme-
diate oxidative/reactive products (free radicals) can get
recombined or can undergo non-radiative decay) before
the occurence of the next pulse.

5. STUDY CASE FOR PARAMETERS ADJUSTMENT

Aside from the interpulse and pulse duration adjustment, an-
other key element is represented by the optimal selection of the
signal’s frequency selection as the following line of reasoning
illustrates.
More precisely, the photochemical effect is due to the energy
transfer, which occurs once with the exposure of the biological
tissue to the pulsed laser signal, that lead to the ionization of
the exposed area. The ionization modifies the electronic struc-
ture of the tissular molecules, which at its turn lead to the re-
lease/generation of the reaction species – free radicals – as the
mono-oxygen, superoxydes, hydroxides.
For instance the Ultra-Violet radiation, due to its high inten-
sity/high energy (its has the highest value within the spectrum
of the electromagnetic rays) leads to the free radicals genera-
tion during a contact within the range of solely several millisec-
onds up to a second.
The rate for radicals generation R could be quantified by using
the formula:

R = I ·σ ·Phi

where:
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I represents the laser irradiance
σ is the energy absorption probability (cross-section)
Φ stand for the efficiecy coefficients, with which the
absorbed energy is transfered into the phenomenon
of free radicals generation.

What happens into the case of an ultra-fast solitonic pulsed
lser?

- In which case the exposure time for each pulse has the
order of femtoseconds (10−15s)

It is important to take into account that the after the contact
transfer of energy, given the non-continuous exposure, due to
the pulsed nature of the considered laser signal, there exists an
interpulse period, when the the energetic surplus could be re-
leased preventing thus the generation of free radicals (the phe-
nomenon of energetic balancing is also called the vibrational
relaxation).
The strategy we have proposed consists in generating pulsed
solitonic laser so that:

I. the interpulse period/gap has to be chosen greater then
the vibrational relaxation (in order to prevent the gener-
ation of free radicals) – and thence less then the order of
milliseconds.

II. the duration of each pulse to shorter enough in order to
prevent the over-heating (of the order of femtoseconds).

In order to achieve both of these aims, one has to devise an
ultra-fast solitonic pulsed laser - with greater values for the
wave-length, situated above the safe-threshold of 700 nm (NIR
– near Infrared) – we propose to opt for a pulsed laser with
the wave length = 900 nm (so that the emitted electromagnetic
pulsed signal will belong to the Infra-Red spectrum).

By this way the energy carried per each pulse will equal:

E = h̄ · c
λ

which for the value λ = 900nm approximately equals 1eV (a
value less than even the the energy carried by the natural light).
The obtained value for the carried energy assigned to the wave
length λ = 900nm, together with the pulse duration: tp = 100 f s
(the generated solitonic pulsed laser is ultra-fast) will thus ex-
clude the photo-thermal risk.
Moreover, expressed in terms of average power, by considering
the pulse duration: tp = 100 f s, the average power of the laser
will be approximately equal to 1.37 eV and 2.2 ·10−19J (which
is an infinitesimal value compared to lasers used for surgical
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purpose); notwithstanding, in order to exclude the possibility
of free-radicals formation, as mentioned above, one has to ob-
tain an interpulse duration greater than the vibrational relax-
ation time (greater therefore than the order of several tens of
picoseconds) – which by judging the problem exclusively in
terms of λ ,ω would be impossible.
- In the sense that: in order to obtain the interpulse duration
greater then the order of picoseconds, one should set an inter-
pulse duration at the order of nanoseconds (which clearly would
excede the vibrational relaxation duration), however such a tem-
poral gap between pulses would require a repetition rate ωrepetition
at the order of several tens of kHz, for instance: ωrepetition =
80kHz. - On the other side, the frequency assigned to a wave-
length of 900 nm, ω equals due to the relation:

E = h̄ · c
λ
= h̄ ·ω

a frequency of approximately 333 THz.

Therefore, we have to make the distinction between the fre-
quency (ω) induced by the wave-length λ and the repetition
rate: ωp ← whose values could by set by using the Mode-
Locking Mechanism (which also generates the solitons pulsed
laser signal); in the sense that to the classical Mode-Locking
Mechanism one has to consider in addition a q-switch, which
selectively “pause” the emittance of pulsed signal at certain
time intervals.
Given all these considerations we propose the use of an ultra-
fast solitonic pulsed laser with the following setting:

∗ the wave-length: λ = 900nm
∗ the pulse duration: tp = 100 f s = 100 ·10−15s
∗ the pulse energy: Ep = 2.2 ·10−19J
∗ the repetition rate: ωrepetition = 80kHz

- so that the repetition period: T = 1
ωp

= 1.25 ·10−5s=
1.25ms (each pulse is repeated by 1.25 micro-seconds);

- so that the interpulse period has the order of micro-
seconds, far beyond the required time for the vibra-
tional relaxation to take place.

∗ spot diameter: 100m → r = 50 ·10−6m.
Wherefore we can compute the following exposure parameters:

∗ The pulse energy: Pavg = Ep · ωrep = 17.6 · 10−15J =
17.6 f J
→ which stands for an infinitesimal value compared to

surgical purposed-used laser.
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- We can thereafter compute the peak power pulse:

Ppeak =
Ep

tp
=

17.6 ·10−15J
100 ·10−15 = 0.17W

- which, given the exposure area, computed as: A = π ·
r2 = π · (50 ·10−6)2 = 7.854 ·10−9m2,

- so that the average irradiance (equal to average power
over area) could be computed as:

Iavg =
Pavg

A
= 2.24 ·10−6W/m2

- Which, again, is an infinitesimal value far from ex-
erting any harmful influence.

We can also compute the duty cycle (the total percentage of
contact considering all the emitted pulses), which is further
equal to: tp/T (the duration of each pulse divided by the rep-
etition period), and obtain for the given pulse that this value
equals:

duty cycle = tp ·ωrep = 100 ·10−15 ·80 ·103 = 8 ·10−9 = 8 ·10−9 = 8 ·10−7%

this formula is interpreted in the following way: supposing that
the pulsed laser is employed (intraoperatively to perform the
Raman spectroscopy) during 1 hour = 3600 s, from 1 hour, the
effectively contact between the pulse and the tissue amounts to
solely: 0.0000008% of the procedure total duration.
Therefore both the irradiance value and the duty cycle have in-
significant values compared to the classical surgery lasers and
practically pose no risks to the human health supposed that
one follows the indicated parameters setting, which could be
achieved by employing an Ti:Sapphire solitonic pulsed laser.
Remark: We stress again the importance of using the mode-
locking mechanism, which not only plays the crucial role in
generating the solitonic pulsed laser, but also grants the pos-
sibility to attach the q-switch for controlling the average irra-
diance and thus maintain the rate for radicals generation R far
less than the threshold of radicals generation.

6. CONCLUSIONS

We can draw as conclusion from all the previous considera-
tions, that despite the fact that for there exists no way to con-
trol the Lyapunov stability for the Pennes bioheat equation that
quantify the photothermal risk induced by the Raman spec-
troscopy used in-vivo, by adjusting the interpulse and pulse
duration for the solitonic pulsed laser signal employed by the
method, one can reduce at once both the photochemical and the
photothermal risks.
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Moreover, the article proves that by considering a repetition
rate of the order of kHz (which is in accordance with consider-
ing larger interpulse gaps) and values for the laser’s frequency
situated below the Near-Infra-Red spectrum, one can obtain in
result an irradiance situated even below the risk of electromag-
netic signals that pertains to the visible light.
At the same time due to the solitonic underlying structure of
the considered laser, even at low energy, it could offer accuracy
for the Raman spectroscopy, by stimulating the formation of
anti-Stokes back-scattered photons.
Therefore, the solitoni pulsed lasers could offer a safe alterna-
tive for the intra-operative Raman spectroscopy.

7. SUBSEQUENT RESEARCH DIRECTIONS

SIII. A promising direction of further research is embodied
by investigating whether using the ultra-short pulsated signals
could ensure the generation of anti-Stokes shifted response (phe-
nomenon also known as CARS), which will involve two advan-
tages:
1. It favorises the apparition of back-scattered anti-Stokes shifted
photons, increasing thus the precision/accuracy of the Raman
spectroscopy.
2. In addition, the anti-Stokes shifted frequency: ν + νi by
the end of the interaction is going to be greater than the ini-
tial value: ν ⇒ which implies that the surplus in terms of fre-
quency stems from the energy surplus taken over from the in-
teraction with the examined molecular sample ⇒ The energy
lost by molecular sample (and taken over by the anti-Stokes
shifted photons) leads to the molecular cooling - which could
counterbalances the photothermal effect.

REFERENCES

[1] G.P.Agraval, Nonlinear fiber optics, Chapter 8: Stimulated Raman Scatter-
ing, sixth edition, Academic Press, 2019

[2] A.Bacciotti, L.Rosier, Liapunov functions and stability in control theory,
Springer, 2009

[3] E.Berroral, The Bio-heat equation. Tissue Optics, Lecture notes, LTH -
Lunds Tekniska Högskola, 2023
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Abstract: This paper explores the formal and conceptual analogies between computed tomography (CT) 
and quantum state tomography, highlighting the shared mathematical structures and reconstruction 
methods that create a bridge between the two. In classical CT, information about an unknown spatial density 
is obtained by measuring line integrals of the object’s internal structure at multiple angles. Such projections 
are mathematically described by the Radon transform, the inverse of which – typically performed through 
the Fourier Slice Theorem and the Filtered Back Projection algorithm – allows the reconstruction of the 
original image.  

Quantum tomography shares a similar goal: to recover an unknown quantum state, represented by a density 
matrix, from the statistical results of multiple measurements performed in different bases. Each 
measurement provides an expectation value that is a linear functional of the state, providing a system of 
equation to be solved for the optimal estimate of the density matrix. Extending the analogy to quantum 
systems, by drawing parallels between spatial image reconstruction and quantum state estimation, this work 
illustrates the deep structural correspondence between classical frequency analysis and the set of 
mathematical methods used in quantum information theory. 

Despite any formal difference, both procedures share the same logical sequence: indirect measurement, 
data transformation into a reconstruction domain, and inversion under suitable constraints. In both cases, 
reconstruction is faced with incompleteness experienced under the form of noise issues, requiring the use 
of regularization methods and optimization techniques to stabilize solutions. Thus, computed and quantum 
tomography have a deep structural resemblance – both decipher indirect measurement data in the form of 
an image or state reconstruction via the same basic mathematical tools in terms of Fourier analysis and 
inverse problems.  

In order to highlight the correspondence, the relevance of this link between the classical and quantum 
tomography, the authors of this article included a brief description of the Shor's algorithm, which sheds 
light upon the fact that the correspondence between correspondence between the classical and quantum 
tomography goes even further in the sense that both of them could be understood as inverse Fourier methods 
that act upon the symmetry groups. The computed tomography acts upon the group of orthogonal 
transformations for a Euclidean space, whereas its quantum counterpart acts upon the group of unitary 
transforms that governs the dynamics over the Bloch's sphere. Thus, both the classical and quantum 
tomography procedures could furthermore be approached by the means of the algebraic theory of Hidden 
subgroup theory, which could embody a gateway for the transfer of classical algorithms within the realm 
of quantum computing and establishing of new development threads for quantum computing.  

Key words: Fourier series image reconstruction, Classical computed tomography, Quantum Computing, Fourier 
transform over symmetry group  
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1. Introduction 
 

Any periodic signal can be represented as a sum of sine and cosine functions (also referred to 
as harmonic components) using the Fourier Series. The structure of the visual data can be shown in 
image processing by breaking down a picture (or, more generally, a signal) into its frequency 
components. In image processing, the structure of the visual data can be highlighted by breaking 
down a picture (or, more generally, a signal) into its frequency components. Analyzing, enhancing, 
and changing digital images for purposes including compression, filtering, and pattern recognition is 
known as image processing. Applications include computer vision, medical imaging, remote sensing, 
and multimedia systems, all of which heavily rely on frequency-domain methods such as the Fourier 
Series.   

Frequency analysis is a fundamental approach in image processing that examines an image's 
frequency components rather than its spatial (pixel-based) representation. By transforming an image 
from the spatial domain to the frequency domain, it becomes possible to isolate and manipulate 
specific frequency bands with greater precision and efficiency. In this domain, the image is 
represented as a combination of sinusoidal patterns at varying frequencies. Low-frequency 
components correspond to gradual intensity changes across large regions (such as smooth gradients), 
while high-frequency components represent rapid changes (such as edges and fine details). The key 
advantage of working in the frequency domain lies in the ability to selectively enhance, suppress, or 
remove certain frequency ranges—making it especially useful for tasks like filtering, compression, 
and noise reduction. 

Tomography is a technique for reconstructing the internal structure of an object from a series 
of its projections. In computed tomography (CT) in medical imaging, these projections are obtained 
by passing X-rays through the object at different angles and recording the resulting intensity patterns. 
Each projection represents a different view of the object. The process is complete when the 
projections are combined to recover the full spatial structure with the help of frequency analysis and 
Fourier methods. The Fourier Slice Theorem establishes that the one-dimensional Fourier transform 
of a projection corresponds to a slice of the two-dimensional Fourier transform of the object at a 
specific orientation. The inverse Fourier transform is then used to piece together the object’s complete 
Fourier representation and then obtain the spatial image. Paired with filtering techniques that control 
noise and enhance detail, this approach facilitates precise and efficient reconstructions.  

In quantum tomography, the concept is similar but takes place in an entirely different physical 
context: instead of reconstructing a spatial image, the objective is to reconstruct the quantum state of 
a system. Measurements in quantum mechanics can be seen as projections in an abstract Hilbert space, 
and their outcomes contain partial information about the underlying quantum state. By gathering 
results from measurements in different bases—analogous to viewing an object from different 
angles—it is possible to reconstruct the state’s full mathematical description, such as its density 
matrix. Fourier-like techniques, along with statistical estimation, are used to process these 
measurement results, revealing the similarity between the structure of the quantum state (state 
estimation in quantum information theory) and the reconstruction of classical images. 
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2. Mathematical Concepts 
 

2.1. Fourier Series and Fourier Transform  

Fourier Series and Transform 

-Purpose: Establish the mathematical foundation for image decomposition and 
reconstruction.[3] 

-Key points: 

-Fourier Series Recap 
• Any periodic function 𝑓(𝑥) with period 𝑇 can be expressed as:[3] 

𝑓(𝑡) = 𝑎! +*+𝑎" + cos /
2𝜋𝑛𝑡
𝑇 3 + 𝑏" sin /

2𝜋𝑛𝑡
𝑇 37

#

"$%

 

• Coefficients: 

𝑎" =
2
𝑇8 𝑓(𝑡) cos /

2𝜋𝑛𝑡
𝑇 3 𝑑𝑡

&

!
 

𝑏" =
2
𝑇8 𝑓(𝑡) sin /

2𝜋𝑛𝑡
𝑇 3 𝑑𝑡

&

!
 

-Fourier Transform (Continuous/1D) 

• For non-periodic functions: 

𝐹(𝜔) = 8 𝑓(𝑡)𝑒'()*𝑑𝑡
#

'#
 

𝑓(𝑡) =
1
2𝜋8 𝐹(𝜔)𝑒()*𝑑𝜔

#

'#
 

-Extension to 2D 

• For images 𝑓(𝑥, 𝑦): 

𝐹(𝑢, 𝑣) = B𝑓(𝑥, 𝑦)𝑒'(+,(./012)𝑑𝑥𝑑𝑦 

• This lets us analyze images in terms of spatial frequencies. 

 

In tomography, instead of directly sampling an object in all spatial coordinates, we measure 
projections, which are linked to the object’s Fourier transform in a specific way. 
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2.2. Fourier Slice Theorem[1] 
 

Tomography 

-Purpose: Describe how picture reconstruction from projections is based on Fourier analysis. 

-Key points: 

-Concept of Reconstruction from Projections 

• We measure 𝑝4(𝑠): the projection of the object 𝑓(𝑥, 𝑦) at angle 𝜃. 
• Radon Transform: 

𝑝4(𝑠) = 8 𝑓(𝑠 cos 𝜃 − 𝑡 sin 𝜃 , 𝑠 sin 𝜃 + 𝑡 cos 𝜃)𝑑𝑡
#

'#
 

where 𝑠 is the position along the projection axis. 

 

-Fourier Slice Theorem (central link)[1] 

• The 1D Fourier transform of     𝑝4(𝑠)          equals a slice of the 2D Fourier transform 
𝐹(𝑢, 𝑣)             of 𝑓(𝑥, 𝑦) along the line at angle 𝜃: 

𝐹5{𝑝4(𝑠)} = 𝐹(𝑢 = 𝜌 cos 𝜃 , 𝑣 = 𝜌 sin 𝜃) 

• This means by collecting projections at multiple angles, we can assemble the object’s full 
2D Fourier transform and invert it. 

-Classical Applications 

• CT scans: X-ray absorption data → projections → Radon inversion. 
• MRI: Measures Fourier space (k-space) directly, so reconstruction is just inverse Fourier 

transform. 

In quantum physics, we can’t “look inside” a state directly, but we can take many different projections 
(measurements in different bases) and reconstruct the quantum state — this is quantum tomography. 

 

2.3. Quantum Theory 

-Purpose: Show how tomography extends from spatial objects to quantum states.[2,4,6] 

-Key points: 

-Basics of Quantum States 

• A pure state: |ψ⟩  
• Density matrix: 𝜌 = |ψ⟩⟨ψ|  for pure states, or more generally for mixed states. 
• For qubits: 
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𝜌 =
1
2
(𝐼 + 𝑟 ∙ 𝜎⃗) 

Where 𝑟 is the Bloch vector and 𝜎⃗ are Pauli matrices. 

-Measurement and Projections

• Measurement in basis {|𝑚⟩} gives probabilities:
𝑝(𝑚) = 〈𝑚|𝜌|𝑚〉 

• Each basis choice gives a different “projection” of the state.

-Quantum State Tomography[6]

• Goal: Reconstruct 𝜌 from measurement data in many bases.
• Analogy to Radon transform: each measurement basis is like a projection of the object’s

structure, and the inversion process is comparable to Fourier reconstruction.
• Methods:

o Linear inversion
o Maximum likelihood estimation
o Compressed sensing (for sparse states)

-Quantum Process Tomography

• Determines the action of an unknown quantum channel 𝜀 by studying how it transforms a
complete set of input states.

-Applications

• Verification of quantum gates in quantum computing.
• Characterization of entanglement and decoherence.
• Quantum cryptography (checking state integrity).

2.3.1. Superposition Principle and Vector Spaces 

In quantum mechanics, states are described by complex column vectors, the notations which 
physicists use for quantum states are |𝐴⟩ and |𝐵⟩. According to The Superposition Principle, given  
|𝐴⟩ and |𝐵⟩ two perfectly distinguishable quantum states, then any linear combination 𝛼|𝐴⟩ + 𝛽|𝐵⟩, 
where the complex coefficients have the property |𝛼|² + |𝛽|² = 1, is also an allowed quantum state. 
Thus, quantum states are unit vectors, and vector orthiogonality precisely translates to 
distinguishability of states in measurement experiments.[2,4]

Qubits as Two-Dimensional Systems: 

A qubit is a quantum system that can only take on two distinguishing values. Unlike classical 
bits, which are strictly in one of two states, a qubit exists in superpositions of two basis states. Such 
basis states may physically represent orthogonal properties such as polarizations of photons, spins of 
electrons, or directions of currents in superconducting circuits. Such multiplicity of physical 
implementations underlies the flexibility of quantum information processing. 

Bra-Ket Notation and inner Products: 

Physicists like to represent quantum states using a notation they call “kets”, so a quantum state 
v would be represented as |𝑣⟩. In mathematics notations, kets are column vectors. Imagine light going 
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through polarized sunglasses. One pair of sunglasses lets through only vertically polarized light, 
another only horizontally polarized light. These are two distinct states: |↔⟩ for horizontal and |↕⟩ for 
vertical. Real light might not purely vertical or purely horizontal. It could be polarized at some angle 
in between. In quantum terms, this “in-between” polarization is a superposition of |↕⟩ and |↔⟩. For 
example, light polarized at a 45° angle is  

|45°⟩ =
1
√2

(|↕⟩ + |↔⟩). 

Quantum mechanics employs the Dirac bra-ket notation to represent states and inner products. States 
are represented as kets |𝜓⟩, or column vectors, while their conjugate transposes are bras ⟨𝜓|, 
represented as row vectors. Their product, ⟨𝜑|𝜓⟩, is the inner product, which contains orthogonality 
and overlap between states. Quantum states are typically normalized unit vectors, thus that ⟨𝜓|𝜓⟩ 	=
	1. 

2.3.2. Unitary Evolution and Matrices 

Evolution of a quantum system is regulated by unitary matrices, that are complex vector space 
rotations. When a matrix 𝑀 is used to a state |𝜓⟩, physical realizability demands that normalization 
must be maintained, and this leads to the condition 𝑀 † 𝑀 = 𝐼. This guarantees reversibility of 
quantum transformations as well as probability amplitudes conservation. 

There are few other conditions a matrix 𝑈 must fulfill in order to be unitary besides 𝑈 † 𝑈 = 𝐼. A 
matrix is unitary if and only if one of the following is true:[2,4]

• 𝑈 † 𝑈 = 𝐼,
• 𝑈𝑈 †= 𝐼,
• the columns of 𝑈 are orthonormal vectors,
• the rows of 𝑈 are orthonormal vectors.

Pauli Matrices and the Bloch Sphere: 

 Study of single-qubit systems in quantum mechanics and quantum information theory is in fact built 
on the Pauli matrices. The three 2×2 matrices are expressed as:[2,4]

𝜎/ = i0 1
1 0k														𝜎2 = i0 −𝑖

𝑖 0 k														𝜎6 = i1 0
0 −1k 

In addition to the identity operator 𝐼, the Pauli matrices form a complete basis for the Hermitian 
operator space in one qubit. It implies that any observable or Hamiltonian of a qubit system can be 
written as a linear combination of the Pauli operators: 

𝐻 = 𝑎!𝐼 + 𝑎/𝜎/ + 𝑎2𝜎2 + 𝑎6𝜎6  ,  𝑎(  𝜖ℝ 

The Pauli operators possess some helpful algebraic properties. Each 𝜎( is both Hermitian and unitary, 
satisfying: 

𝜎(
7 = 𝜎(            𝜎(+ = 𝐼 

They obey anticommutation relations: 

q𝜎( ,  𝜎8r = 𝜎(  𝜎8 + 𝜎8  𝜎( = 2𝛿(8𝐼 

and commutation relations: 
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t𝜎( , 𝜎8u = 2𝑖 ∈(89 𝜎9 

Where ∈(89 is the Levi-Civita tensor. These commutation relations render the Pauli matrices 
generators of the Lie algebra su(2), which in turn generates the symmetry group SU(2). This group-
theoretic connection highlights their role as the natural building blocks for all single-qubit unitary 
maps. 

One qubit can be in the superposition of the computational basis states ∣0⟩ and ∣1⟩:[2,4]

∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩,										|𝛼|+ + |𝛽|+ = 1. 

By writing the coefficients in spherical coordinates, one obtains: 

∣ 𝜓⟩ = 𝑐𝑜𝑠(2/𝜃	) ∣ 0⟩ + 𝑒𝑖𝜙𝑠𝑖𝑛(2/𝜃	) ∣ 1⟩, 

where 𝜃 ∈ [0, 𝜋] and 𝜙	 ∈ [0,2𝜋). This correspondence provides a point on the unit sphere in ℝ:, 
known as the Bloch sphere, with Cartesian coordinates: 

𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙,						𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,					𝑧 = 𝑐𝑜𝑠𝜃. 

North pole (𝜃 = 0) is the state |0⟩ and south pole (𝜃	 = 𝜋) is |1⟩. The points in between are coherent 
superpositions of the basis states. The Bloch sphere therefore provides an intuitive geometric 
representation for qubit states with global phases ignored. 

Pauli operators are generators of rotations on the Bloch sphere. A general rotation about an axis 
defined by the unit vector 𝑛�⃗ = �𝑛/  , 𝑛2 , 𝑛6  � by angle 𝜃  is expressed as:[2,4,6]

𝑅"(𝜃) = 𝑒'
(4
+ <"!=!0""="0"#=#>

Special cases are rotations about the coordinate axes: 

𝑅/(𝜃) = 𝑒
'(+
4 𝜎/,   𝑅2(𝜃) = 𝑒

'(+
4 𝜎2 ,   𝑅6(𝜃) = 𝑒

'(+
4 𝜎6.

For example, the rotation about the y-axis in its explicit version is: 

𝑒'(4=2 +⁄ = �
cos

𝜃
2

− sin
𝜃
2

sin
𝜃
2 cos

𝜃
2

�, 

which is a rotation of the Bloch vector through angle 𝜃 about the y-axis. These operations are the 
components of one-qubit quantum gates used in quantum computing. 

Algebra's connection to geometry is highlighted by the analysis of operators of the form:[2,4,6]

𝑀@ = 𝑝/𝜎/ + 𝑝2𝜎2 + 𝑝6𝜎6, 

where 𝑝 = �𝑝/ ,  𝑝2,  𝑝6� is a unit vector. The matrix Mp is Hermitian with eigenvalues ±1. The 
eigenvector for the +1 eigenvalue is the qubit state in the direction p on the Bloch sphere, and the 
eigenvector for the −1 eigenvalue is the antipodal point. This establishes a direct correspondence 
between the eigenvalue structure of the Pauli operators and the geometric representation of qubits on 
the Bloch sphere. 
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The Pauli matrices also explicitly appear in physical Hamiltonians. For instance, the Hamiltonian 
of a spin -1/2 particle in a magnetic field B is: 

𝐻 = −𝛾𝐵 ⋅ 𝜎 = −𝛾�𝐵/𝜎/ + 𝐵2𝜎2 + 𝐵6𝜎6�, 
where γ is the gyromagnetic ratio. The eigenvalues of this Hamiltonian are ±𝛾 ∣ 𝐵 ∣ 	, which denote 
spin states parallel or anti-parallel with the magnetic field. On the Bloch sphere, this Hamiltonian 
induces precession of the Bloch vector about the axis specified by B, associating algebraic rotation 
with observable quantum dynamics. 

3. Image processing

3.1. Fourier Series and Fourier Transform 

Fourier Series expresses periodic signals as a sum of sinusoidal components, that is sine and 
cosine wave. Fourier series is concerned with the approximation of a function as sinusoids of different 
frequencies. These sinusoids are harmonically related, i.e., they are multiples of the fundamental 
frequency of the signal in consideration. The goal is to represent any periodic function as an ultimately 
infinite sum of sinusoids or complex exponential harmonically related. All such component functions 
possess a definite amplitude and phase that are exactly measured by respective coefficients. This 
capability to describe complicated phenomena in terms of intrinsic oscillations lays out the full power 
of Fourier analysis. The approach provides a canonical form to complicated systems that is usually 
simpler than the original specification, and this advantage goes across field boundaries.[3]

Fourier Transform is a representation of a signal—whether periodic or non-periodic—as a 
continuous summation of sinusoidal components of all frequencies. Unlike the Fourier Series, which 
characterizes signals as a summation of discrete harmonics, Fourier Transform takes into account a 
continuum of frequencies, providing a frequency-domain description of the signal. It seeks to 
represent any time-domain function as an integral of complex exponentials with coefficients that 
precisely capture the amplitude and phase of each frequency component. It is this transformation that 
reveals the underlying spectral content of signals so that complex time-domain phenomena can be 
described in terms of their constituent frequency ingredients. The strong point of the Fourier 
Transform is its ability to convert time-domain complexity into a simpler, structured frequency-
domain representation, a feature that is exploited across fields such as communications, signal 
processing, physics, and engineering. 

In Fourier-based image reconstruction, an image 𝑓(𝑥, 𝑦) is expressed as a sum of basis 
functions—typically complex exponentials—whose coefficients are obtained via the Fourier 
transform: [3]

𝑓�(𝑢, 𝑣) = B𝑓(𝑥, 𝑦)𝑒'+,((./012)𝑑𝑥𝑑𝑦 

The Fourier coefficients 𝑓�(𝑢, 𝑣)	tell us about how much of each spatial frequency is present 
in the image. Low frequency components are employed to describe smooth intensity variations such 
as gradual shading, and high frequency components capture fine texture and hard edges. 

If the Fourier coefficients are known for all frequencies (u,v), the image can be reconstructed 
by the inverse Fourier transform:[3]

𝑓(𝑥, 𝑦) = B𝑓�(𝑢, 𝑣)𝑒+,((./012)𝑑𝑢𝑑𝑣 
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In the digital case, the image is represented as a 2D array 𝑓[𝑚, 𝑛] and transformed using the 
2D Discrete Fourier Transform (DFT):[3]

𝐹[𝑘, 𝑙] = * *𝑓[𝑚, 𝑛]𝑒'+,(A
9B
C 0D"EF

E'%

"$!

C'%

B$!

 

With the inverse given by: 

𝑓[𝑚 , 𝑛] = * *𝐹[𝑘, 𝑙]𝑒+,(A
9B
C 0D"EF

E'%

D$!

C'%

9$!

 

3.2. Reconstruction[3] 

Reconstruction involves taking all of the frequency-domain coefficients and combining them 
with the inverse Fourier transform to get back the original spatial-domain image. Practically, direct 
computation of the DFT takes a computational complexity of 𝑂(𝑁+) for a 1D signal or 𝑂(𝑁G) for a 
2D image of size N×N, which is prohibitive for large data sets. The Fast Fourier Transform (FFT) is 
an algorithm that reduces this cost to 𝑂(𝑁𝑙𝑜𝑔𝑁) in 1D and 𝑂(𝑁+𝑙𝑜𝑔𝑁) in 2D, making frequency-
based image reconstruction viable in real-time applications. The FFT accomplishes this by recursively 
breaking the DFT into smaller pieces and exploiting symmetries in the complex exponentials. This 
efficiency is crucial in medical imaging, video processing, and any application requiring rapid 
transformation between the spatial and frequency domains. 

The Fourier coefficients 𝑓�(𝑢, 𝑣) or 𝐹[𝑘, 𝑙] are complex quantities having both magnitude and 
phase information. The intensity spectrum �𝑓�(𝑢, 𝑣)�  is the amount of each spatial frequency, and the 
phase spectrum 𝑎𝑟𝑔(𝑓�(𝑢, 𝑣)) is the location of structures in an image. Smooth transitions like gradual 
shading or background intensity are represented by low-frequency terms and sharp transitions like 
edges and fine textures by high-frequency terms. Both phase and magnitude are significant—
discarding the phase information yields unrecognizable images even where the magnitudes are 
preserved. 

Reversing an image back from its frequency-domain representation is a question of taking the 
inverse Fourier transform, which adds all frequency components together into the space domain. In 
digital systems, this is achieved by the Inverse Discrete Fourier Transform, typically computed by 
the IFFT algorithm in order to be efficient. If there is loss or alteration of some of the frequencies—
e.g., due to limited sampling during acquisition or intentional filtering—the reconstructed image will
differ from the original. Removal of high frequencies causes blurring, removal of low frequencies
removes large-scale structure and contrast, and random loss of frequencies can lead to ringing or other
artifacts.

Fourier-domain frequency manipulation directly affects the reconstructed image. Low-
frequency removal reduces contrast and brightness variations across the image, but high-frequency 
removal blurs edges and fine detail. Frequency modification selectively underlies a broad array of 
filtering techniques—low-pass filters eliminate noise but cause blurring, high-pass filters enhance 
edges but can amplify noise too, and band-pass filters extract specific patterns. Understanding how 
each frequency range makes up the image is crucial in effective reconstruction and enhancement. 

 Fourier-based reconstruction formulates the problem of imaging analysis and reconstruction 
in the spatial space to one of the frequency domain, where mathematical methods and filtering 
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operations can more easily be used. The continuous Fourier transform and discrete Fourier transform 
provide the theoretical and practical environment for so doing, with the Fast Fourier Transform 
offering a method of calculation that is efficient. With knowledge of the interplay between magnitude, 
phase, sampling, and frequency content, it becomes possible to combine high-quality images from 
frequency-domain data into many applications. 

4. Tomography[1]

While Fourier series decompose periodic signals into sums of sinusoidal components,
enabling reconstruction in the frequency domain, tomography generalizes the idea of reconstruction 
from transformed data to a broader context.  

Tomography focuses on learning about an object’s interior without physically cutting it. It 
accomplishes this by reconstructing the interior structure from a series of measurements collected 
outside the body. 

In computed tomography (CT), instead of directly analyzing an image’s frequency content, 
we work with projections—line integrals of an unknown function 𝑓(𝑥, 𝑦) representing the interior 
structure of an object.  

4.1. Radon Transform[1] 

Each projection corresponds to the accumulated attenuation of a beam (such as an X-ray) as 
it passes through the object, along a certain direction. Mathematically, in parallel-beam geometry, a 
projection at angle 𝜃 is described by the Radon transform:[1] 

𝑅𝑓(𝜃, 𝑠) = 8 𝑓(𝑠 cos 𝜃 − 𝑡 sin 𝜃 , 𝑠 sin 𝜃 + 𝑡 cos 𝜃)𝑑𝑡,
#

'#
 

where s is the perpendicular distance from the origin to the integration line, and t is the coordinate 
along that line. This formula describes the total accumulation of f along the line defined by (𝜃, 𝑠). In 
medical CT, this models how an X-ray beam records the comulative absorption along its path. The 
set of all such projections 𝑅𝑓(𝜃, 𝑠) for 𝜃 ∈ [0, 𝜋) forms a sinogram – the raw data representation in 
CT. The Radon transform is a linear operator and is invariant under translation and rotations of the 
object. 

4.2. Fourier Slice Theorem[1,5] 

The core principle of tomography is similar to Fourier-based reconstruction: partial 
measurements encode the object in a transformed domain, and an inversion process retrieves the 
spatial distribution. The Fourier Slice Theorem provides the bridge, showing that the 1D Fourier 
transform of a projection 𝑅𝑓(𝜃, 𝑠) with respect to s equals the restriction of the 2D Fourier transform 
of f(x,y) to the line through the origin at angle 𝜃.  

𝐹5{𝑅𝑓(𝜃, 𝑠)}(𝜌, 𝜃) = 8 𝑅𝑓(𝜃, 𝑠)𝑒'+,(H5𝑑𝑠
#

'#
= 𝑓�(𝑢 = 𝜌 cos 𝜃 , 𝑣 = 𝜌 sin 𝜃), 

where 𝐹5 denotes the 1D Fourier transform with respect to s.  

This result means that each projection provides a slice of the object’s Fourier transform along 
a radial line in frequency space. As more projections are collected at many angles, the Fourier domain 
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will be gradually filled with radial samples. If enough projections are available, one can assemble 
these slices into the full Fourier representation and invert it to recover 𝑓(𝑥, 𝑦). Because the data is 
collected in polar coordinates, interpolation to a Cartesian frequency grid is needed before applying 
the inverse 2D Fourier transform, a step that introduces additional numerical challenges. 

4.3.Advantages and disadvantages of FST[1,3,5] 

The practical application of the Fourier Slice Theorem to real tomographic data is not that 
simple. Tomography is not simply a matter of applying an inverse Fourier transform. In theory, if one 
could measure projections 𝑅𝑓(𝜃, 𝑠) for all angles 𝜃 ∈ [0, 𝜋) and for all real values of s, the Fourier 
domain 𝑓�(𝑢, 𝑣) would be completely determined. In practice, however, only a finite number of 
projection angles are measured, and along each projection the detector records data at discrete sample 
points rather than continuously. This means that the Fourier domain is only partially covered, leaving 
gaps in the radial frequency lines. This limitation means that when we try to reconstruct the object, 
artifacts such as streaks or blurring appear because the sampling is insufficient to perfectly 
approximate the continuous Fourier space. The fewer projections, the more pronounced these artifacts 
become. 

Another challenge is represented by the interpolation from polar to Cartesian frequency grids. 
FST naturally provides Fourier data in polar coordinates: each projection gives a radial slice through 
the Fourier domain. To apply the inverse Fourier transform numerically (using FFT, for example), 
the data must be represented on a Cartesian frequency grid. Since polar and Cartesian nodes rarely 
coincide, this requires interpolation of the polar data onto a rectangular grid before performing the 
inverse FFT. Some interpolation techniques are not exact. Errors are introduced especially in regions 
where the polar sampling is sparse, typically near the outer parts of frequency space (high 
frequencies). These errors manifest in the final reconstruction as additional noise, ringing, or blurring. 

 The most elementary approach is nearest-neighbor interpolation, where the value at a 
Cartesian frequency point (𝑢, 𝑣) is assigned from the closest polar sample. If 𝑔(𝜌, 𝜃) denotes the 
sampled Fourier data in polar coordinates, then nearest-neighbor interpolation amounts to  

𝑓�(𝑢, 𝑣, ) ≈ 𝑔�𝜌9 , 𝜃8�, 

where �𝜌9 , 𝜃8� is the closest polar grid point to (𝑢, 𝑣). While computationally efficient, this piecewise 
constant approximation produces blocky artifacts and jagged edges, especially in regions dominated 
by high-frequency content. 

A more accurate alternative is linear spline interpolation, which approximates the function 
between known samples using continuous, piecewise linear segments.  

Suppose we know the sampled Fourier data along a radial direction, {𝑔�𝜌9 , 𝜃8�}9, where 𝜌9 
are discrete radial frequencies for a fixed angle 𝜃8. For an intermediate point 𝜌 ∈ [𝜌9 , 𝜌90%], linear 
spline interpolation defines 

𝑔�𝜌, 𝜃8� ≈
𝜌90% − 𝜌
𝜌90% − 𝜌9

𝑔�𝜌9 , 𝜃8� +
𝜌 − 𝜌9

𝜌90% − 𝜌9
𝑔�𝜌90%, 𝜃8�. 

This formula produces a continuous function along 𝜌, ensuring that the interpolant is piecewise linear 
between nodes, while still exactly matching the known sample values at the grid points 𝜌9.  
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The main advantage of linear spline interpolation is that it is computationally efficient and 
provides a smoother approximation than nearest-neighbor interpolation, which is piecewise constant 
and prone to blocky artifacts. Linear splines guarantee continuity of the interpolated function, which 
helps reduce visible discontinuities in the reconstructed image. However, the method still has 
limitations: because the interpolant is only first-order continuous (the derivative is not continuous at 
the knots), the resulting approximation can still appear angular and may blur fine details or sharp 
edges. Additionally, when sampling density in angle 𝜃 is insufficient, linear spline interpolation alone 
cannot compensate, leading to streaking artifacts in reconstructions. 

Noise in the data is harmful, particularly for high frequencies. A main property of the Radon 
transform is that it smooths the original function by integrating along lines. This effect diminishes the 
contribution of high-frequency details in the projection data. When the Fourier Slice Theorem is used 
to invert the transform, these weak high-frequency components must be amplified to restore detail. 
However, the noise present in measurements is not smoothed in the same way and can dominate the 
high frequency band. As a consequence, reconstruction procedures tend to amplify noise when 
attempting to restore fine detail. This instability is the main reason why tomography is an ill-posed 
problem: the inversion is highly sensitive to small perturbations in the data. To counteract this, filters 
are applied, often combined with windowing functions that suppress excessive noise amplification at 
the cost of losing some resolution. 

4.4.Interpolation[5] 
4.4.1. Piecewise Interpolation 

In tomography, piecewise interpolation is preferred over global polynomial interpolation 
because of both practical and numerical reasons. A global interpolating polynomial, such as the 
Lagrange polynomial of degree n-1, would require fitting a single high-degree polynomial through 
all sampled Fourier data. This approach is unstable. As the number of samples increases, the 
polynomial oscillates strongly between points (Runge phenomenon), which introduces artificial 
artifacts instead of reducing them. Moreover, global methods are computationally expensive and 
sensitive to noise. A small error in one sample can distort the entire approximation. 

By contrast, piecewise interpolation (linear, cubic spline, PCHIP, etc.) only uses local 
information to approximate between neighboring samples. This ensures numerical stability, lower 
computational cost, and better local accuracy. Each small interval is interpolated independently, so 
local errors remain localized instead of propagating across the whole frequency space. This is 
essential in tomography, where data are often noisy and incomplete, and where reconstructions 
depend heavily on maintaining smooth and consistent local transitions in the Fourier domain. 

An overview of the algorithm that creates a piecewise linear interpolant can be found here. 
This algorithm’s stages serve as the foundation for more complex piecewise polynomial interpolants, 
also known as splines. 

First, the interval index k is determined such that 

𝑥9 ≤ 𝑥 ≤ 𝑥90%. 

Second, we define a local variable 𝑠 ≔ 𝑥 − 𝑥9. 

Third, we compute the first divided difference 

𝛿9 ≔
𝑦90% − 𝑦9
𝑥90% − 𝑥9

. 
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Finally, we construct the interpolant 

𝑃(𝑥) = 𝑦9 +
𝑦90% − 𝑦9
𝑥90% − 𝑥9

(𝑥 − 𝑥9)	

= 𝑦9 + 𝛿9𝑠. 

This is the Newton form of the (linear) interpolating polynomial. It can be generalized to 
higher-degree interpolants by using higher-order divided differences; i.e., divided differences of 
divided differences. 

So, we have constructed the straight line that passes through (𝑥9 , 𝑦9) and (𝑥90%, 𝑦90%). The 
points 𝑥9 are sometimes called breakpoints. 

Note: 𝑃(𝑥) is a continous function of 𝑥, but its first derivative 𝑃′(𝑥) is not. 𝑃I(𝑥) = 𝛿9 on 
each subinterval and jumps at the breakpoints. 

4.4.2. Cubic Interpolation and Cubic Spline Interpolation[5] 

A more advanced alternative is piecewise cubic interpolation, where each interval between 
neighboring data points is approximated by a cubic polynomial. Unlike linear interpolation, which 
guarantees only continuity of the function values, cubic interpolants can also enforce continuity of 
the first derivative, and in some cases even the second derivative, across interval boundaries. This 
extra smoothness significantly improves the visual and numerical quality of the reconstruction. 
Piecewise cubic interpolation requires specifying not only the function values at the nodes but also 
estimates of the slopes (derivatives). 

For an interval [𝑥9 , 𝑥90%] with spacing ℎ = 𝑥90% − 𝑥9 and local variable 𝑠 = 𝑥 − 𝑥9, 
consider the following cubic polynomial: 

𝑃(𝑥) =
3ℎ𝑠+ − 2𝑠:

ℎ: 𝑦90% +
ℎ: − 3ℎ𝑠+ + 2𝑠:

ℎ: 𝑦9 +
𝑠+(𝑠 − ℎ)

ℎ+ 𝑑90% +
𝑠(𝑠 − ℎ)+

ℎ+ 𝑑9 , 

where 𝑦9 , 𝑦90% are the known function values and 𝑑9 , 𝑑90% are the slopes at the nodes. 

Interpolants for derivatives are known as Hermite or osculatory interpolants because of the 
higher-order contact at the breakpoints. If we know both function values and first derivatives at a 
set of points, then a piecewise cubic Hermite interpolant can be fit to those data.  

But if we are not given the derivative values, we need to define the slopes 𝑑9 somehow. 
There are different possibilities for defining these slopes. One widely used approach is the 
piecewise cubic Hermite interpolating polynomial (PCHIP), which selects slopes in such a way that 
the interpolant is shape-preserving. This means that if the data are monotone or convex in a local 
interval, the interpolant will not introduce spurious oscillations (artificial wiggles that appear 
because of smoothness prioritization) or overshoots (interpolated curve rises high/drops lower than 
actual data near sharp changes). While PCHIP ensures only ℂ% continuity (the first derivative is 
continuous but the second derivative is not), it avoids these artifacts that can occur with cubic 
splines. As a result, the interpolated curve follows the natural trend of the data more faithfully, even 
if it is not as mathematically smooth. 

Another common choice is the cubic spline, which instead enforces global smoothness. In 
addition to continuity of the function values and first derivatives at the nodes, cubic splines also 
require continuity of the second derivative (curvature) across all interior knots:  

𝑃(𝑥9) = 𝑦9 ,					𝑃I(𝑥9') = 𝑃I(𝑥90),					𝑃II(𝑥9') = 𝑃II(𝑥90),					𝑓𝑜𝑟		𝑘 = 2, . . . , 𝑛 − 1. 
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To close the system, special boundary conditions must be imposed. One popular choice is 
the “not-a-knot” condition, which requires that the first two subintervals [𝑥%, 𝑥+] and [𝑥+, 𝑥:] be 
described by the same cubic polynomial (and similarly for the last two subintervals). This 
effectively reduces the number of knots by two and yields a unique spline solution without 
artificially fixing endpoint slopes.  

4.5. Filtered Back Projection[1,3,5] 

The most widely used method for reconstructing an image from projection data is Filtered 
Back Projection. An inversion formula for the Radon transform is given by the classical filtered back 
projection formula: 

𝑓(𝑥, 𝑦) =
1
2𝐵

(𝐹'%[|𝑆|𝐹(𝑅𝑓)(𝑆, 𝜃)])(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ ℝ+ 

Proof. Let 𝑓 ∈ 𝐿%(ℝ+) ∩ 𝐶(ℝ+) with 𝐹J ∈ 𝐿%(ℝ+) and let (𝑥, 𝑦) ∈ ℝ+ be fixed. Applying the 2D 
Fourier inversion formula to 𝑓 yields the identity 

𝑓(𝑥, 𝑦) = 𝐹'%(𝐹𝑓)(𝑥, 𝑦) =
1
4𝜋+B𝐹𝑓 (𝑋, 𝑌)𝑒((/K02L)𝑑𝑋𝑑𝑌. 

By changing the variables (𝑋, 𝑌) ∈ 	ℝ+ from Cartesian coordinates to (𝑆, 𝜃) ∈ ℝ × [0, 𝜋) in polar 
coordinates, i.e.,  

𝑋 = 𝑆 cos(𝜃) 			and				𝑌 = 𝑆 sin(𝜃) 

we get 𝑑𝑋𝑑𝑌 = |𝑆|𝑑𝑆𝑑𝜃. Thus, with the Fourier slice Theorem follows that 

𝑓(𝑥, 𝑦) = %
G,$ ∫ ∫𝐹𝑓(𝑆 cos(𝜃) , 𝑆 sin(𝜃))𝑒(M(/ NOP(4)02 PQR(4))|𝑆|𝑑𝑆𝑑𝜃,

!  

SM&
¢£ 𝑓(𝑥, 𝑦) = %

G,$ ∫ ∫𝐹(𝑅𝑓)(𝑆, 𝜃)𝑒(M(/ NOP(4)02 PQR(4))|𝑆|𝑑𝑆𝑑𝜃,
!  

   = %
+, ∫ 𝐹'%[|𝑆|𝐹(𝑅𝑓)(𝑆, 𝜃)](𝑥 cos(𝜃) + 𝑦 sin(𝜃), 𝜃)𝑑𝜃,

!  

= %
+
𝐵(𝐹'%[|𝑆|𝐹(𝑅𝑓)(𝑆, 𝜃)])(𝑥, 𝑦) 

due to the definition of the back projection. 

The classical FBP formula is highly sensitive with respect to noise and it cannot be used in 
practice. The formula can be stabilized by incorporating a low-pass filter 𝐹T. 

Definition (Low-pass filter). Let L>0 and let 𝑊 ∈ 𝐿∞(ℝ) be even and compactly supported with 

𝑠𝑢𝑝𝑝(𝑊) ⊆ [−1,1]. 

A function  𝐹T: ℝ → ℝ of the form 

𝐹T(𝑆) = |𝑆|𝑊(𝑆 ⁄ 𝐿)      for 𝑆 ∈ ℝ 

is called low-pass filter for the stabilization of the FBP formula, where L denotes its bandwidth and 
W is its window function. For the sake of brevity, we set 𝐹 ≡ 𝐹% so that 

𝐹T(𝑆) = 𝐿𝐹(𝑆 ⁄ 𝐿)										∀	𝑆 ∈ ℝ. 
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In the following, let 𝐹T be a low-pass filter with bandwidth L and window W. Because of the 
compact support of W, we have 𝐹T ∈ 𝐿@(ℝ) for all 1 ≤ 𝑝 ≤ ∞ and 

𝑠𝑢𝑝𝑝(𝐹T) ⊆ [−𝐿, 𝐿]. 

Now, let the target function 𝑓 satisfy 𝑓 ∈ 𝐿%(ℝ+). Based on the FBP formula we define the 
approximate FBP reconstruction 𝑓T via 

𝑓T(𝑥, 𝑦) =
1
2𝐵

(𝐹'%[𝐹T(𝑆)𝐹(𝑅𝑓)(𝑆, 𝜃)])(𝑥, 𝑦),					∀(𝑥, 𝑦) ∈ ℝ+. 

This equation defines a band-limited approximation of the target function 𝑓. A function whose 
Fourier transform 𝐹𝑓 has compact support is called a band limited function. 

4.6. Filtered Back Projection guided by the Interpolation model 

Recent research shows that filtered back-projection can be improved by tailoring the 
reconstruction filter to the interpolation model used for the sinogram.  

By representing the projection data with B-splines and combining the ramp filter with the spline 
fitting process, the filtering and interpolation steps are treated as a single operation. 
This model-driven approach produces cleaner reconstructions and higher peak signal-to-noise ratios 
(PSNR), with the greatest benefits when using low-degree interpolation such as linear splines. 
Among the tested strategies, oblique projection and fractional spline filtering give the largest 
improvements (up to 2.5 dB over the classical Shepp-Logan filter) while moving from linear (𝑛 = 1) 
to cubic (𝑛 = 3) splines yields a further 2-4 dB gain regardless of the specific filter. 
The fractional derivative method offers a slight additional advantage by implementing the ramp filter 
analytically within the spline framework, ensuring a reconstruction that is fully consistent with the 
underlying mathematical model. 

Traditionally, FBP first applies a ramp filter (such as the Ram–Lak or Shepp–Logan filter) to 
each projection and then performs interpolation during back-projection. 

However, when the sinogram is modeled with B-spline interpolation, the filtering operator can 
be modified to match the spline space, yielding measurable improvements in image quality. 

The approach is to merge the ramp filtering and spline fitting processes into a single operation. 
Let 𝑝4(𝑡) be the projection data for angle 𝜃 and 𝑔4(𝑡) its ramp-filtered version. 
Instead of applying a standard filter and then interpolating, one represents 𝑔4(𝑡) as a spline 
expansion 

𝑔4(𝑡) ≈*𝑐4(𝑘)
9∈ℤ

𝛽"(𝑡 − 𝑘), 

where 𝛽" is a B-spline of degree n and the coefficients 𝑐4(𝑘) are computed directly in the Fourier 
domain. 
Because the ramp filter corresponds to a fractional derivative, it can be combined with the spline 
prefilter in a single frequency-domain operation. 

Three spline-guided filtering strategies have been proposed: 

• B-spline interpolating ramp filter.
The ramp filter and B-spline prefilter are combined so that the ramp-filtered sinogram is
represented directly in the spline basis.
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• Oblique projection filter.
Instead of simple interpolation, the filtered sinogram is projected obliquely onto the spline
space, producing a least-squares–like approximation that better matches the band-limited
nature of the data.

• Fractional spline filter.
Using fractional B-splines, the ramp filter is applied analytically as a fractional derivative,
which naturally reduces the spline degree by one and eliminates the need for a strict band-
limitation assumption.

Experiments with the Shepp–Logan phantom (128×128 pixels, 256 projection angles) 
demonstrate the benefit of these methods. 
For linear interpolation (𝑛 = 1), the standard Shepp–Logan filter yields a peak signal-to-noise ratio 
(PSNR) of 29.16 dB, while the B-spline filter achieves 30.98 dB, the oblique projection filter 32.91 
dB, and the fractional spline filter 33.10 dB. 
With cubic splines (𝑛 = 3), the PSNR improves further to about 34.7–34.9 dB, roughly two 
decibels higher than the classical filter.[1,3,5]

      These results highlight that interpolation and filtering are inherently linked: selecting a spline 
model not only improves the interpolation from polar to Cartesian coordinates, but also allows the 
ramp filter itself to be optimized for that model, yielding sharper edges and reduced artifacts in the 
final tomographic reconstruction. 

5. Tomography in Quantum Systems[6]

Qubit (quantum bit) is the quantum information unit, analogous to the classical bit but
governed by the laws of quantum mechanics. A classical bit will be in one of two states (0 or 1), while 
a qubit will exist in a superposition of both states simultaneously. A qubit may be represented 
mathematically as a vector in a two-dimensional Hilbert space: ∣ψ⟩=α∣0⟩+β∣1⟩, where ∣0⟩ and ∣1⟩ are 
the computational basis states, and α, β ∈ ℂ	 are complex coefficients satisfying |𝛼|+  +  |𝛽|+ = 1 . A 
more general description uses the density matrix formalism, and this can be applied to both pure states 
(maximally known) and mixed states (statistical mixtures). Geometrically, every pure qubit state is a 
point on the Bloch sphere, ∣0⟩ and ∣1⟩ being the poles and all other points superpositions. It is this 
rich structure that renders the qubit superior to the classical bit and upon which quantum computing, 
communication, and tomography are founded. 

The most natural visualization of a qubit is the Bloch sphere, a geometric model of all pure 
qubit states. In this model, a qubit state is a point on a unit sphere in three dimensions. The poles of 
the sphere represent the basis states: ∣0⟩ is represented by the north pole and ∣1⟩ by the south pole. 
Any other point on the surface represents a superposition of the basis states as: 

∣ψ⟩=cos( 4
+
)∣0⟩+𝑒(Wsin(4

+
)∣1⟩,

where θ and ϕ are spherical coordinates.[2,4,6]
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Tomography is a general concept: one reconstructs an unknown object by combining 
information from many partial measurements or projections. In classical computed tomography, this 
is to reconstruct the spatial absorption distribution in a body from X-ray projections at many angles. 
In quantum tomography, the principle is the same, but the object of study is a quantum state rather 
than a physical cross-section. Since quantum states may not be measured directly, only 
probabilistically, measurement outcomes, tomography is the reconstruction of the density matrix ρ 
which is the full statistical description of a quantum system. 

The case of a single qubit:[2,4] 

A qubit state is fully described by a 2 × 2	density matrix, which can be expressed in terms of 
the Bloch vector 𝑟 = (𝑟/  , 𝑟2  ,  𝑟6): 

𝜌 =
1
2 �𝐼 + 𝑟/𝜎/ + 𝑟2𝜎2 + 𝑟6𝜎6�, 

where  𝜎/ ,  𝜎2 ,  𝜎6 are the Pauli matrices. Geometrically, this is a point on the Bloch sphere. To 
calculate ρ, one can compute the expectation values of such Pauli operators, 〈𝜎/〉, 〈𝜎2〉, 〈𝜎6〉.This is 
achieved by creating many copies of the qubit and measuring them in three bases (the eigenbases of 
X, Y and Z). The ratio of relative frequencies of measurement outcomes provides directly estimates 
for components of 𝑟. Plugging these values into the formula reconstructs the density matrix. 

This process is more or less like reconstruction from projections in CT. Any measurement 
basis is akin to a "projection" of the state to be determined on some axis of the Bloch sphere, exactly 
as any X-ray scan is a projection of the object along some direction. A single measurement provides 
incomplete information, but the collection of all measurements put together enables us to reconstruct. 

The most straightforward reconstruction technique is linear inversion, whereby measured 
frequencies are simply inverted to yield expectation values and used in place of the Bloch-vector 
expansion. This will often, however, result in an unphysical density matrix (negative eigenvalues) 
owing to finite sampling and noise. To avoid this, current techniques employ Maximum Likelihood 
Estimation (MLE): one finds the physical state ρ (semipositive definite with trace = 1) that maximizes 

α|0⟩ + β|1⟩ 

|1⟩ 

|0⟩ α 

β 

Figure 1: The representation of the qubits over the Bloch Sphere 
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the likelihood of obtaining the experimental data. MLE is more stable, adheres to quantum 
constraints, and is used widely in experimental quantum information. 

Whereas qubit tomography demonstrates the underlying principle, actual quantum 
information tasks involve handling more extensive systems: multi-qubit registers or qubits of larger 
dimension. The mathematical object to be reconstructed remains the density matrix ρ but increases in 
size with increasing system dimension. For a system of dimension d, ρ is a d×d   Hermitian, it is a 
positive semidefinite matrix of unit trace. It thus possesses d2−1 real degrees of freedom. For n qubits, 
the dimension is d= 2n and the number of parameters becomes 4n –1, which grows exponentially with 
the number of qubits. This scaling gives very severe challenges for quantum tomography. 

In order to build such a state, one has to perform an informationally complete set of 
measurements, i.e., a set of observables or bases whose values produce enough independent equations 
so that all of the unknown parameters of ρ can be solved.  

5.1. Density Matrices and Quantum Measurements[2,4,6] 

Up to this point we have described a qubit as a pure state 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩,										|𝛼|+ + |𝛽|+ = 1, 

which is adequate when we know the system is perfectly prepared. In practice, however, a qubit may 
be in a statistical mixture of different pure states. For example, a source might emit |0⟩ with 
probability 𝑝 and |1⟩ with probability 1 − 𝑝. 

To describe such situations, we use a density matrix 

𝜌 =*𝑝9
9

|𝜓9⟩⟨𝜓9|, 

which is a positive-semidefinite, Hermitian 2 × 2 matrix with unit trace (𝑡𝑟𝜌 = 1). Pure states appear 
as special cases where 𝜌 = |𝜓⟩⟨𝜓|. 

Measurements in quantum mechanics are represented by observables, i.e. Hermitian operators 𝑂. 
When a system in state 𝜌 is measured, the expectation value of 𝑂 is 

〈𝑂〉 = 𝑡𝑟(𝑂𝜌). 

Tomography relies on collecting enough of these expectation values to determine all the unknown 
entries of 𝜌.  

A set of observables is called tomographically complete if their expectation values uniquely specify 
the density matrix. For a single qubit, measurements of the Pauli operators 𝜎/, 𝜎2, 𝜎6 together with 
the identity form such a complete set. 

5.2. Linear Inversion in Quantum State Tomography[2,4,6] 

The goal of quantum state tomography is to reconstruct the density matrix 𝜌 of an unknown quantum 
system from experimental measurements. 

Each measurements outcome provides an estimate of the expectation value of some observable 𝑂(. 

If we perform a tomographically complete set of measurements—typically the three Pauli operators 
𝜎/, 𝜎2, 𝜎6—these expectation values form a linear system 
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𝑚 = 𝑀𝑟, 

where 

𝑚 = (〈𝑂%〉, 〈𝑂+〉, … )& is the vector of measured averages, 
𝑟 = �𝑟/ , 𝑟2 , 𝑟6�

& is the unknown Bloch vector,
and 𝑀 is the measurement matrix whose entries are 𝑀(8 = 𝑡𝑟�𝑂(𝜎8�⁄2. 
Linear inversion simply solves this equation for 𝑟 using standard linear algebra (matrix inversion 
or least squares if the system is overdetermined). 
The reconstructed density matrix is then 

𝜌¬ =
1
2 �𝐼 + 𝑟̂/𝜎/ + 𝑟̂2𝜎2 + 𝑟̂6𝜎6�. 

This procedure is conceptually straightforward: estimate the expectation values from repeated 
measurements, plug them into the linear system, and compute the Bloch vector. 
However, experimental noise and finite sampling can yield a solution 𝜌¬ that is not a valid physical 
state—for example, it may have a small negative eigenvalue, violating the requirement 𝜌 ⪰ 0. Such 
unphysical results arise because linear inversion does not impose the positivity constraint during 
reconstruction. 
Despite this drawback, linear inversion remains important because it provides a fast, unbiased 
baseline estimate of the quantum state and serves as the starting point for more refined methods, 
such as maximum-likelihood estimation, which enforce positivity and other physical constraints. 

6. The link between classical tomography and quantum state tomography

The role of linear inversion in quantum state tomography closely mirrors its role in classical 
tomography. In classical imaging, the goal is to reconstruct an unknown object, such as the internal 
structure of the human body, from a collection of projection measurements taken at different angles. 
Each projection corresponds to a line integral of the object’s density function, and these integrals 
are combined into a system of linear equations. By inverting this system—directly or approximately
—one recovers the density distribution. This process is what underlies reconstruction methods such 
as filtered back-projection. 

Quantum tomography follows the same logic, but the object being reconstructed is no longer a 
spatial density function—it is the quantum state of a system, encoded in the density matrix 𝜌. 
Measurements of different observables (for instance, Pauli operators) provide expectation values, 
which play the role of the projection data in the classical case. Here, performing a measurement in 
the 𝑋, 𝑌, and 𝑍 bases is directly analogous to taking projections of a body at different angles in a 
CT scan: each setting gives a different “slice of information” about the unknown system. These 
expectation values are linearly related to the unknown parameters of 𝜌, just as projection data 
are linearly related to the unknown pixel values in an image. Linear inversion again supplies the 
reconstruction step: solving the linear system formed by measurement results yields the best-fit 
density matrix, in the same way solving the Radon transform equations yields the object’s density 
distribution. 

Linear inversion is therefore the natural link between classical and quantum tomography. In both 
cases, the unknown object—whether a spatial density function or a quantum density matrix—is not 
observed directly, but only through indirect measurements that are linearly related to it. 
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Reconstruction consists of inverting this linear relationship: projections in classical tomography and 
expectation values in quantum tomography. 

The key difference is in interpretation: in classical tomography, the reconstructed image corresponds 
to a tangible spatial distribution, while in quantum tomography it represents the full probabilistic 
description of a quantum system.  

6.1. Symmetry Groups 

One of the most important tools in the modern physics is embodied by the symmetry group; more 
precisely to define a physical theory consists in: 

• a differentiable manifold 𝑀

- the natural generalization of a surface
- a space, which locally (at the level of an infinitesimal neighborhood) is isomorphic to a linear
space ℝE

- so that the isomorphism map is also differentiable (wherefore the name of differentiable
manifold stems)

• and a group of symmetries (𝐺,·) - in the sense that:

• The entire dynamics/motion over the manifold 𝑀 is realised by the intercession of the
transformations from the symmetry group 𝐺:

more precisely, for any 𝑦%, 𝑦+ 	 ∈ 	𝑀, there exists a transformation 𝑎	 ∈ 	𝐺, so that: 

𝑎 ∙ 𝑦 − 1 = 𝑦+ 

- So, the points over the manifold M are moved by the elements/transformations of the
symmetry/transformation group 𝐺.

Some notable examples of symmetry groups are: 

I. Given a finite (cyclic) group with N elements, for instance: ℤE =
ℤ
Xℤ

 (obtained by considering the 
factorization: 𝑎	𝑚𝑜𝑑	𝑁, ∀)𝑎 ∈ ℤ (for instance: 16	𝑚𝑜𝑑	3	 = 	1)) 

ℤE 	= 	 {0, 1, 2,·	·	·	, 𝑁	 − 	1} 

so that the points in ℤE could be visually/geometrically represented as a polygon with 𝑁 edges of 
identical edges inscribed within a circle of radius 1. So that, the composition of ℤE could be 
represented geometrically as rotations that interchange the 𝑁 vertices of the respective polygon over 
the circle of radius 1: These rotations are of angle: +,

E
 And could be represented mathematically as: 

𝑒
+,(92
E

Due to the fact that the circle of radius one could be understood as a subset of the set of complex 
numbers: ℂ and the trigonometric rotations could be encoded via the exponential due to the Euler’s 
formula:	𝑒(2 	= 	 cos(𝑦) + 𝑖 sin(𝑦)These considerations will play a central role in establishing the 
link between the Fourier transform considered over groups and for instance the Shor’s algorithm. 
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II. Considering the linear space: RN, the most prominent transformations groups are the following
groups of matrices (subsets of 𝑀E(ℝ)):

• The general linear group, that comprises all the invertible matrices:
𝐺𝐿(𝑁; 𝑅) = {𝐴 ∈ 𝑀E(ℝ)|det	(𝐴) ≠ 0} 

- This groups comprises contains all the linear transforms over ℝE(including any change of frame -
coordinate/basis change in RN).

• The group of orthogonal transformations:
𝑂(𝑁) = {𝐴 ∈ 𝑀E(ℝ)|𝐴 ∙ 𝐴* = 𝐴* ∙ 𝐴 = 𝐼E} 

- mathematically, the elements of 𝑂(𝑁) stand for rotations and reflections over ℝE(with the
determinant equal to 1 or −1).

- Thus 𝑂(𝑁) stands for the counterpart (generalization) of the rotation group when one replaces the
finite group ℤE by ℝE

III. In particular, when one considers the linear space: ℂE , the role of O(N) is replaced by the group
of unitary transformations:

𝑈(𝑁 − 1) = {𝐴 ∈ 𝑀E(ℂ)|𝐴 ∙ 𝐴* = 𝐴* ∙ 𝐴 = 𝐼E} 

The elements of 𝑈(1) for instance act as rotations upon the complex plane ℂ and given that the Bloch 
sphere could be projected over the complex plane, the elements of 𝑈(1) are those transformations 
that act upon the qubits (embodying the quantum gates - used to define quantum circuits (as the basis 
for the quantum computation)). 

It is important to mention that the considered group of symmetries (matrix-transformations) is the 
one that defines a given physical theory - for instance the Quantum Electrodynamics (and thus also 
the quantum computation) are defined by the group of unitary transformations: 𝑈(1). 

6.2.Elements of representation theory 

The link between the symmetry groups and the Fourier transform is mediated/obtained through the 
notion of Group Representation: 

• Given a group of symmetries: (𝐺,�), to write a representation of the group 𝐺 means:

- To consider a linear space 𝑉 (for instance 𝑉 might be chosen as: ℝE or ℂE (where 𝑁 is the dimension
of the considered representation))

- and one group homomorphism 𝜋 that maps/assigns:

𝜋 ∶ 	𝐺	 → 	𝐺𝐿(𝑉	) 

and so that: 

𝜋(𝑎 � 𝑏) = 𝜋(𝑎) · 𝜋(𝑏), ∀)𝑎, 𝑏	 ∈ 	𝐺 

- for instance, in case that: 𝑉	 = 	ℝE :

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

107



𝜋: 𝐺 → 𝐺𝐿(ℝ;𝑁) 

- which assigns (and thus represents) any element 𝑎	 ∈ 	𝐺 as a matrix transformation from 𝐺𝐿(ℝ;𝑁)
that acts upon the linear space: ℝE.

• In this case it is also said that the group 𝐺 acts upon the linear space of representation 𝑉.
• The set of all the possible representations of a given group (𝐺,�) is de-noted as: 𝐺º and is also
called the Pontryaghin group - denoted by: 𝐺º.

There exists a theorem which states that for any locally compact group (a group, which locally is 
bounded/allows bounded and closed neighborhoods), the group of all the possible representations: 𝐺º 
is isomorphic to 𝐺.  

Once one has defined the concept of representation of a group (𝐺,�) and the Pontryaghin dual group 
of representations: 𝐺º, one can assign the notion of character to any representation:  

- More precisely, given a representation of the group: (𝐺,�) ∶ 	𝜋	 ∈ 	𝐺º, the character is defined as:

𝜒,(𝑎	 ∈ 	𝐺) 	= 	𝑡𝑟(𝜋(𝑎)) 
• for instance, supposing that one considers	𝜋 ∶ 	𝐺	 → 	𝐺𝐿(ℂ, 𝑁)	a representation, then:

𝜋(𝑎) 	= 	𝐴	 ∈ 	𝐺𝐿(𝐶, 𝑁) 	⇒ 	𝜉𝜋(𝑎) 	= 	𝑡𝑟(𝐴) the trace of the matrix A 
↓ 
so that the character is just a function:	𝜒 ∶ 𝐺 → 𝐶. 

6.3.Fourier Transform on a group 

At this moment, we are in the position to generalize the Fourier transform defined over ℝ to the case 
when it is considered over a group 𝐺. 

In order to attain this aim, we have to consider: 

- a group 𝐺, with a representation π over the general liniar group associated to the linear space ℂ	(𝜋 ∶
	𝐺	 → 	𝐺𝐿(ℂ)),

- and given any function:
𝑓 ∶ 	𝐺	 → 	ℂ 

• the Fourier transform of the function f is defined as:

𝐹[𝑓] 	= 	𝑓�, 	= *𝑓(𝑎) · 𝜋(𝑎)
Y∈Z

 

• Respectively the inverse Fourier transform is defined as:

𝑓(𝑎) 	= 	* 𝑡𝑟(𝜋(𝑎'%)) · 𝑓¾,
,∈Z[

	= *𝜒,(𝑎'%) 	 · 𝑓�,
,∈Z[

 

The classical Fourier transform reconsidered: 
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Let us revise how this generalization reduces just to the classical definition of the Fourier transform 
for the particular case when: (𝐺,�) 	= 	 (𝑅, +): 

- First of all, it is important to notice that any representation of the commutative/abelian group (𝑅, +)
could be obtained by the means of the exponential function:

→ The exponential function grants all the unitary and irreducible representations for the group (R, +)

- Since the group: (𝑅, +) is abelian, locally compact, the Pontryaghin duality theorem states that the
dual group (the set of all the irreducible, unitary, continuous) representations: 𝐺º is also a locally-
compact abelian group.

- The group (𝑅, +) is represented over: 𝐺𝐿(ℂ, 1) 	= 	𝑈(1) and each representation has the form:

𝜋\ ∶ 	ℝ	 → 	𝑈(1) ∶ 	 𝜋\(𝑦) 	= 	 𝑒(\2 

- so that each real number 𝜉 ∈ ℝ defines a representation and therefore the dual group: ℝ¿ ≃ ℝ is
isomorphic to ℝ itself (every real number 𝜉	 ∈ 	ℝ labels a representation).

∗ At this point, based on the previous considerations related to the Fourier transform over a group 𝐺, 
the Fourier transform for the group (𝑅, +) will have the form: 

𝐹	[𝑓] 	= 	 𝑓¾(𝜉) 	= 	8 𝑓(𝑦) · 𝜋\(𝑦)𝑑𝑦
#

'#
	= 8 𝑓(𝑦) · 𝑒'(\2𝑑𝑦

#

'#
 

- and the inverse Fourier transform rebuilds f as the continuous superposition (the integral) of these
irreducible “modes” of the group action representation (frequencies):

𝑓(𝑦) 	= 	
1
2𝜋8 𝑓¾(𝜉) · 𝑒'(\2𝑑𝜉

#

'#
 

- Expressing what amount contains	𝑓 of each representation.

6.4.The application of the group Fourier Transform for the Shor’s algorithm as a gateway

The (discrete) Fourier transform considered upon the finite (cyclic) group: ZN is used to find the 
hidden period of the function used for the data encryption. 

The property used is just the action of the discrete Fourier transform upon the qubits - it is used to 
rotate/change the state of a qubit: 

|𝑎⟩ =
1
Â𝑞

∙*Ä𝑐⟩ ∗ 𝑒+,(Y
]
+

^'%

]$!

- Thus, mimicking the action of slicing the state.

- By considering this action, the Fourier transform could be perceived as a gateway by the means of
which: when considering the Fourier transform over groups, one can generalize the classical
reconstruction algorithms in the following way:

I. First one quantifies the classical algorithm in terms of the Fourier transforms defined upon the
symmetry group for the space of the classical algorithm
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II. Consider the group homomorphism between the symmetry groups assigned to the classical and
quantum assigned spaces.

III. Thereafter decode/reinterpret the classical algorithm in terms of the Fourier transform considered
over the quantum symmetry counterpart group in order to deduce the steps for the quantum
counterpart algorithm

⇒ Thus, the gateway between the classical and quantum algorithms resides in a symmetry groups’
homomorphism followed by the reenacting of the algorithm steps in terms of group 
Fourier Transform. 

6.5. Overview of Shor’s Algorithm 
Peter Shor’s algorithm, introduced in 1994, is one of the first quantum algorithms to demonstrate 

exponential speedup over its classical counterparts. Its goal is to factorize a large integer 𝑛 
efficiently by finding the period 𝑟 of the modular exponential function 

𝐹(𝑎) = 𝑥Y	 𝑚𝑜𝑑	 𝑛 
where 𝑥 is an integer coprime to 𝑛. Once the period	𝑟 is found, the factors of 𝑛 can be obtained using 
simple arithmetic relations based on the properties of modular exponentiation.  
F(a) is a periodic function, with period r, thus we know that 𝑥!	𝑚𝑜𝑑	𝑛 = 1, 𝑥_ 	𝑚𝑜𝑑	𝑛 = 1, and 
𝑥+_ 	𝑚𝑜𝑑	𝑛 = 1 and so on. Because of this: 

𝑥_ ≡ 1	𝑚𝑜𝑑	𝑛 

(𝑥_/+)+ 	= 𝑥_ ≡ 1	𝑚𝑜𝑑	𝑛 

(𝑥_/+)+ − 1 ≡ 0	𝑚𝑜𝑑	𝑛 
and if 𝑟 is an even number 

(𝑥_/+ − 1)(𝑥_/+ + 1) ≡ 0	𝑚𝑜𝑑	𝑛 

The product (𝑥_/+ − 1)(𝑥_/+ + 1)	is an integer multiple of 𝑛. As long as 𝑥_/+ is not equal to ±1, 
then at least one of (𝑥_/+ − 1), (𝑥_/+ + 1) must have nontrivial factor in common with 𝑛. So, by 
computing gcd(𝑥_/+ − 1, 𝑛), and gcd(𝑥_/+ + 1, 𝑛), we will obtain a factor of 𝑛, where gcd is the 
greatest common denominator function. 

The algorithm consists of the following steps: 

Step 1: Determine if 𝑛 is a prime, an even number, or an integer power of a prime number. If it is, we 
will not use Shor’s algorithm. 

Step 2: Pick an integer 𝑞 that is a power of 2 such that 𝑛+ ≤ 𝑞 < 2𝑛+. 

Step 3: Pick a random integer 𝑥 that is coprime to 𝑛 (two numbers are coprime when their greatest 
common divisor is 1).  

Step 4: Create a quantum register and partition it into two parts, register 1 and register 2. Thus the 
state of our quantum computer can be given by: |𝑟𝑒𝑔1, 𝑟𝑒𝑔2⟩. Register 1 must have enough qubits to 
represent integers as large as 𝑞 − 1. Register 2 must have enough qubits  to represent integers as large 
as 𝑛 − 1. The calculations for how many qubits are needed would be done on a classical computer. 
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Step 5: Load register 1 with an equally weighted superposition of all integers from 0 to 𝑞 − 1. Load 
register 2 with all zeros. The total state of the quantum memory register at this point is: 

1
Â𝑞

*|𝑎, 0⟩
^'%

Y$!

Step 6: Apply the transformation 𝑥Y	𝑚𝑜𝑑	𝑛 for each number stored in register 1 and store the result 
in register 2. Due to quantum parallelism this will take only one step, as the quantum computer will 
only calculate 𝑥|Y⟩	𝑚𝑜𝑑	𝑛, where |𝑎⟩ is the superposition of states created in step 5. The state of 
quantum memory register at this point is: 

1
Â𝑞

*|𝑎, 𝑥Y	𝑚𝑜𝑑	𝑛⟩
^'%

Y$!

Step 7: Measure the second register, and observe some value 𝑘. This has the side effect of collapsing 
register one into an equal superposition of each value 𝑎 between 0 and 𝑞 − 1 such that  

𝑥Y	𝑚𝑜𝑑	𝑛 = 𝑘 

The state of the quantum memory register after this step is: 
1

Â‖𝐴‖
* |𝑎′, 𝑘⟩

Y%$Y%∈c

Where 𝐴 is the set of 𝑎’s such that 𝑥Y	𝑚𝑜𝑑	𝑛 = 𝑘, and	‖𝐴‖ is the number of elements in that set. 

Step 8: Compute the discrete Fourier transform on register one. The discrete Fourier transform, when 
applied to a state |𝑎⟩, changes it in the following manner: 

|𝑎⟩ =
1
Â𝑞

*�𝑐⟩ ∗ 𝑒+,(Y]/^
^'%

]$!

 

This step is performed by the quantum computer in one step through quantum parallelism. After the 
discrete Fourier transform our register is in the state: 

1
Â‖𝐴‖

*
1
Â𝑞Y%∈c

*�𝑐, 𝑘⟩ ∗ 𝑒+,(Y%]/^
^'%

]$!

 

Step 9: Measure the state of register one (call this value 𝑚). This integer 𝑚 has a very high probability 
of being a multiple of 𝑞/𝑟, where 𝑟 is the desired period.  

Step 10: Take the value m, and on a calssical computer do some post processing which calculates	𝑟 
based on knowledge of 𝑚 and 𝑞, in particular: 

- There is a high probability that 𝑚 = 𝜆 ∗ (𝑞/𝑟) where 𝜆	is an integer
- If we perform floating point division of 𝑚/𝑞, and then calculate the best rational

approximation to 𝑚/𝑞 whose denominator is less than or equal to 𝑞.
- We take this denominator to be a candidate for 𝑟.
- If our candidate 𝑟 is odd, we double it if doing so leads to a value less than 𝑞.

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

111



Step 11: Once you have attained 𝑟, a factor of 𝑛 can be determined by taking gcd(𝑥_/+ − 1, 𝑛) and 
gcd(𝑥_/+ + 1, 𝑛). If you have found a factor of n, stop, if not go back to step 4. There is the need to 
go back to step 4, in case Shor’s algorithm failed to produce factors of 𝑛.  

6.6. Shor’s Algorithm and the Tomographic Perspective 
The mathematical essence of Shor’s algorithm can be interpreted through the concept of 

tomographic “sections” – slices that reveal periodic or structural properties of a function or state. In 
this view, Shor’s quantum period-finding procedure is analogous to reconstructing a hidden 
structure (periodicity) by examining its projections in a transformed space. 

In Shor’s algorithm, this reconstruction occurs in the frequency domain through the 
Quantum Fourier Transform acting over the group ℤE. In classical tomography, reconstruction 
occurs in spatial or projection space through the inverse Fourier transform, which inverts the 
projections obtained via the Radon transform. 

Therefore, both approaches rely on the interplay between a function and its transformations – in 
one case over an abstract commutative group (quantum), and in the other over Euclidean space 
(classical). 

6.7.Transformations as Translations and Rotations in the Euclidean Group 
In classical tomography, transformations correspond to translations and rotations in the 

Euclidean group 𝐸(𝑛) associated with ℝ+ or ℝ:. These operations describe the movement of the 
projection plane through different spatial orientations. The inverse Fourier transform then 
reconstructs the original object by summing over all such projections. 

Analogously, in Shor’s algorithm, the QFT acts as a transformation that rotates and 
translates the quantum state within its Hilbert space representation. Although the domain is 
abstract and unitary rather than geometric, the algebraic structure is similar: both processes explore 
the invariances and symmetries of their associated transformation groups. 

6.8.Tomography and the Hidden Subgroup Problem 
From an algebraic perspective, both classical and quantum tomography can be described in terms 

of inverse transformations applied to symmetry groups: 
In classical tomography, the relevant symmetry group is the Euclidean or orthogonal group 𝐸(𝑛) 

or 𝑂(𝑛), whose elements represent spatial rotations and translations. In quantum tomography, the 
transformations belong to the unitary group 𝑈(𝑁), which acts on the Hilbert space of quantum 
states. These unitary operations “move” states across the Bloch sphere, effectively 
changing the measurement basis or the informational projection of the quantum system. 

In both contexts, reconstruction corresponds to the inversion of a group action — that is, 
to retrieving hidden information (structure, symmetry, or periodicity) from observed projections. 

From this algebraic point of view, all tomographic techniques — classical and quantum — can 
be unified within the framework of Hidden Subgroup Problems (HSPs). In Shor’s algorithm, the 
hidden subgroup corresponds to the set of integers forming the periodicity 𝑟 of the modular 
exponential function. The QFT reveals this subgroup by transforming the problem into a 
frequency-domain pattern recognition task. 
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Similarly, in classical tomography, one reconstructs an object (a “hidden structure”) by analyzing 
its projections, effectively solving an inverse problem where the underlying symmetry (e.g., rotational 
invariance) defines the subgroup structure. 

This algebraic viewpoint provides a foundation for generalizing classical reconstruction methods 
to the quantum level, suggesting that algorithms developed for classical tomography or Fourier image 
reconstruction can be reinterpreted as instances of quantum hidden subgroup algorithms. 

6.9.The inverse Fourier Transform and the Hidden Subgroup Problem framework 

The Hidden Subgroup Problem (HSP) provides a unifying algebraic structure that connects Fourier 
analysis, tomographic reconstruction, and quantum algorithms. In its general form, the HSP can be 
stated as follows: given a group 𝐺 and a function 𝑓: 𝐺 → 𝑆 that is constant on the cosets of a hidden 
subgroup 𝐻 ⊆ 𝐺 and distinct on different cosets, the task is to determine 𝐻. 

This abstract formulation includes both classical signal reconstruction problems and quantum 
period-finding algorithms. In Shor’s algorithm, 𝐺 = ℤ" and 𝐻 = 𝑟ℤ" (the subgroup of integers 
modulo 𝑛 generated by the period 𝑟); the Quantum Fourier Transform (QFT) is used to identify 𝐻 by 
revealing the frequency components corresponding to its periodic structure. 

From the perspective of classical tomography, the same mathematical mechanism appears under 
a different form: the Inverse Fourier Transform is applied to reconstruct an unknown spatial or 
functional structure from its projections — effectively retrieving the hidden symmetry or distribution 
underlying the measurement data. 

Thus, the Inverse Fourier Transform serves as the conceptual and operational bridge between the 
two domains: In classical algorithms, it reconstructs images or densities by inverting the Radon or 
projection transforms; In quantum algorithms, it inverts the encoding of periodicity or symmetry to 
reveal the hidden subgroup. 

This correspondence highlights a deep algebraic unity: both the tomographic inversion and the 
quantum period-finding procedure are instances of the same group-theoretic inversion principle 
— the recovery of hidden structural information through Fourier duality. The realization of 
this connection through the framework of Hidden Subgroup Problems establishes a bridge 
between classical Fourier-based reconstruction methods and quantum algorithms such as Shor’s, 
suggesting that many classical inverse problems can be generalized to the quantum domain via 
this shared transformational foundation. 
        6.10.Proposal for a Transcription algorithm 
In order to effectively bridge the quantum computing and the classical reconstruction techniques, 
one need to take into account: 

- The fact that symmetry groups used by the classical image reconstruction algorithms are
obtained on the basis of the rotations groups: as SO(2), SO(3) – as well as in the most
general case: SO(2N) or SO(2N+1)

- While the quantum computing constructs quantum circuits on the basis of quantum gates –
which, in the most general case, are mathematically described in terms of groups of
unitary transformations: U(N)

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

113



Therefore, in order to effectively construct the link between image reconstruction techniques and 
the quantum computing, one need to relate the groups of unitary transformations U(N) to the 
orthogonal groups SO(2N). 
Thus we are led towards a problem of representation for the group of unitary transformations 
that act upon the complex linear space: 𝐶E: 

𝑈(𝑁) = {𝑈 ∈ ℳ𝒩(𝐶)�𝑈7𝑈 = 	𝐼_𝑁	} 
Whose elements are all the invertible 
matrices with the determinant equal 
to 1 in the general linear group 
𝐺𝐿(𝐶, 𝑁) – with the property that: 
𝑈'% = 𝑈7 and 𝑑𝑒𝑡(𝑈) = 1; the determinant being 1 means that the transform is unitary and thus a 
natural to the complex case of the transformation subgroup 𝑆𝑂(𝑁) ≤ 𝐺𝐿(𝑅,𝑁).  

Moreover the group of complex unitary transformations could be represented by the means of the 
special orthogonal group of transformations in the following way:  

- Consider at the outset the fact that any complex matrix could be described as the sum of
two real matrices:

𝑈	 = 	𝐴	 + 	𝑖𝐵,	with 𝐴, 𝐵	 ∈ ℳ𝒩(𝑅), for any complex matrix: 𝑈 ∈ ℳ𝒩(𝐶) 

- And therefore could be represented as a matrix with real entries by the means of a map
π:ℳ𝒩(𝐶) → ℳ+𝒩(𝑅) – defined by the association rule:

π(𝑈) = i 𝐴 −𝐵
𝐵 𝐴

k ∈ ℳ+𝒩(𝑅), ∀𝑈 ∈ ℳ𝒩(C) 

- If furthermore: 𝑈 ∈ 𝑈(𝑁) ≤ ℳ𝒩(𝐶), with: 𝑈	 = 	𝐴	 + 	𝑖	𝐵	and 𝑈7𝑈 = 𝐼E
By computing the transpose between U and its Hermitian transpose, one obtains:

𝑈7𝑈 = 𝐼E ⇔ (𝐴 + 𝑖𝐵)& ⋅ (𝐴 + 𝑖𝐵) = 𝐼E	 ⇔ (𝐴& − 𝑖𝐵&)(𝐴 + 𝑖𝐵) = 𝐼E 
so that: 𝐴&𝐴 + 𝐵&𝐵 = 𝐼E and 𝐴&𝐵 = 𝐵&𝐴 

whence it follows that: 

π(𝑈)& ⋅ π(𝑈) = i 𝐴& 𝐵&
−𝐵& 𝐴&

k ⋅ i 𝐴 −𝐵
𝐵 𝐴

k 

		= / 𝐴c + 𝐵&𝐵 −𝐴&𝐵 + 𝐵&𝐴
	 −𝐵&𝐴 + 𝐴&𝐵 𝐵f + 𝐴&𝐴

3 

																																																							= / 𝐼E 𝑂E
𝑂E 𝐼E

3

- Which means that the matrix assigned by the representation π to any complex unitary
transformation: 𝑈 ∈ 𝑈(𝑁) is just an orthogonal matrix:

π(𝑈) ∈ 𝒪(2𝑁) 	≤ 𝐺𝐿(2𝑁, R), ∀)	𝑈	 ∈ 𝑈(𝑁)	 
- Thus there could be evinced an injective groups homomorphism by the means of which:

𝑈(𝑁) could be identified with a subgroup of 𝒪(2𝑁); more precisely, since one can
describe the group of unitary complex transformations:

- To this adds the fact that for any: 𝑈 ∈ 𝑈(𝑁) ⇒ 𝑑𝑒𝑡(𝑈) = 1 ⇒ 𝑑𝑒𝑡�π(𝑈)� = 1
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Whence it follows that: π(𝑈) ∈ 𝑆𝑂(2𝑁) ≤ 𝒪(2𝑁), which yields that the representations π 
maps:  

π:𝑈(𝑁) → 𝑆𝑂(2𝑁) ≤ 𝒪(2𝑁} ≤ 𝐺𝐿(2𝑁, 𝑅) 
The effective link with the classical tomography revolves around the fact that the classical 
tomography could be described in terms of the Fourier Transform defined over the symmetry 
groups 𝑆𝑂(2𝑁); for instance considering a problem of planar tomography, one is naturally led 
towards the group 𝑆𝑂(2): 

• The matrices in the group 𝑆𝑂(2) (orthogonal transforms with the determinant equal to 1)
describe all the possible rotations in the plan:

𝑆𝑂(2) = Ò𝑅4 = / 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 3 Ó𝜃 ∈

[0; 2𝜋)	} ≃ 𝑈(1)	

An abelian compact group that is isomorphic to the circle group: 
(𝑈(1),⋅) ≃ �𝑆% = {eQg},⋅�	 

The Fourier transform upon this group will therefore be described in terms of the 
representations for the group: (𝑈(1),⋅) ≃ �𝑆% = eQg,⋅� : 𝑒(⋅"⋅g, 𝑛 ∈ 𝑍, so that for any 
function: 𝑓 ∈ 𝐿+�𝑆𝑂(2)�, the Fourier coefficients are obtained by the means of discrete 
Frequencies: q𝑒'(⋅"⋅g	}: 

𝑓(𝑛) =
1
2π ⋅ 8 𝑓(θ)

+i

!
⋅ 𝑒'(⋅"⋅g𝑑θ 

So that the function f could be retrieved by applying the inverse Fourier transform: 

𝑓(θ) = *𝑓(𝑛)
"∈j

⋅ 𝑒(⋅"⋅g 

(where the one dimensional Fourier series could be understood as the Fourier transform 
over the group 𝑆𝑂(2)) 

• We are going to make use of the Fourier transform over the group 𝑆𝑂(2) and relate it to
the classical tomography:

- The classical bidimensional (planar) tomography makes use of the attenuation coefficient
(𝑓(𝑥, 𝑦)) of the X-ray at each point of the exposed area in order to build the image

- and measures the line-integrals of 𝑓(𝑥, 𝑦) along line
o of angle θ
o and offset s (illustrating the distance between the intercept and the origin)

- The set of all the line integrals for 𝑓(𝑥, 𝑦) alongside such lines is parametrized by the
Radon transform:

𝑅𝑓(θ, 𝑠) = 8 𝑓(𝑥, 𝑦)𝑑𝑙
/ ]k5(g)02 5("(g)$5

 

           Where:  θ ∈ [0; 2π) is the line’s rotation angle 

𝑠 ∈ 𝑅0 intercept-origin distance  

- Therefore the Radon transform 𝑅𝑓(⋅,⋅) could be rendered as a function defined over the
space: (θ, 𝑠) ∈ 𝑆𝑂(2) × 𝑅 
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- with the Fourier slice theorem illustrating the inherent identity between the Fourier
transform of the Radon transform and the Fourier transform of the attenuation’s
coefficient (relation that proves the possibility to retrieve the image from sections):

ℱ𝓈[𝑅𝑓(θ, 𝑠)](ω) = 𝑓�(ω 𝑐𝑜𝑠(θ) , ω 𝑠𝑖𝑛(θ)) 

      The 1-dimensional Fourier transform for each for each projection describes a section of 
the Fourier Transform for the bidimensional image, so that:  

𝑅𝑓×(𝑛,ω) =
1
2π ⋅ 8 8 𝑅𝑓(θ, 𝑠)

0#

'#

+i

!
⋅ 𝑒(("g0m5)𝑑𝑠𝑑θ = 2π𝑖'"𝑓�(ω 𝑐𝑜𝑠(θ) , ω 𝑠𝑖𝑛(θ)) 

- Therefore the inversion of the Radon transform (that actually reconstructs the image out of
the attenuation coefficient of the X-rays by back-projection) could be equated to
considering the inverse Fourier transform over the group: 𝑆𝑂(2) × 𝑅, which exhibits the
Fourier transform over the group 𝑆𝑂(2)	𝑎𝑠 foundation of the classical tomography.

Taking advantage of the fact that 𝑺𝑶(𝟐) is just the representation group of 𝑼(𝟏); and more 
generally: 𝑺𝑶(𝟐 ⋅ 𝑵) is just the representation group of 𝑼(𝑵), it means that any operation 
involving the Fourier transform over the special orthogonal group has a direct correspondent 
within the unitary group, which amounts has a direct correspondent in term of a quantum 
operation upon a qubit, or more generally a system of N qubits, unveiling thus a bidirectional 
intrinsic gateway for the algorithm transcription between the classical image reconstruction 
methods and the quantum algorithms.  

The scheme of this transcription algorithm is based upon the representation as: 
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Figure 2: The logical foundation for a transcription algorithm     
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Abstract 

Today, most communication systems still use fixed security protocols and static setups that do not react well when 
the context changes or when new threats appear, especially with the progress of quantum computing. In this 
paper, we suggest an adaptive approach to communication security that combines artificial intelligence with 
mathematical optimization. The main idea is crypto-agility, meaning the system can switch automatically between 
cryptographic protocols depending on the threat level, available resources, and latency needs. Unlike costly 
solutions such as quantum key distribution or specialized hardware, our design relies on existing standards like 
TLS 1.3 and IPSec, supported by software-based HSM modules. To guide the AI in decision making, we define a 
utility function that balances security, computing cost, and performance impact. We also discuss how techniques 
such as fractional calculus and wavelet analysis can be used for anomaly detection, while evolutionary algorithms 
can help improve switching strategies. A simple block diagram shows how telemetry data is processed by the AI 
engine, which calculates the utility score and applies the selected protocol at the gateway. The aim is to create a 
security solution that is scalable, adaptable, and ready for post-quantum challenges, while still being practical 
for research institutions and critical infrastructures. 

Key words: crypto-agility; anomaly detection; AI in security; post-quantum cryptography; optimization 
algorithms 

1. INTRODUCTION

As quantum computing continues to advance, many of the cryptographic methods we
rely on today may no longer be secure [1] [2]. This creates an urgent need for systems that can 
adjust their security settings whenever conditions change. In this paper, we introduce an 
adaptive security model that brings together AI-based decision engines and mathematical 
optimization to tackle this problem. To keep the work clear and consistent, all symbols and 
abbreviations follow the same rules, and measurements are expressed using the International 
System of Units. 

2. CONTENT

The proposed model employs an AI Policy Engine that evaluates network telemetry
(latency, CPU usage, threat indicators) and applies a utility function: 

U(p) = α · S(p) - β · C(p) - γ · P(p)  [2] 

Our utility function model is inspired by the multi-criteria decision approach discussed 
in [3], where AI dynamically selects post-quantum algorithms based on contextual factors. In 
our case, we adapt this idea to balance security gain, computational cost, and performance 
penalty in communication networks. 
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Here, S(p) denotes security gain, C(p) computational cost, and P(p) performance 
penalty for a given policy p. The AI engine selects among policies such as AES-128, AES-256, 
or hybrid post-quantum schemes [3] [2]. 

 

Figure 1: Minimal block diagram of the AI-driven crypto-agility system. 

Figure 2 presents the block diagram of the proposed system. Telemetry data are 
processed by the AI engine, which computes the utility function U(p), selects the optimal 
cryptographic protocol, and enforces it at the gateway. 

In the future, this project could be improved in a few ways. One is to test if fractional 
calculus and wavelet analysis can help find anomalies in encrypted traffic. Another is to use 
evolutionary algorithms so the system can switch protocols better when the network changes. 
It would also be good to try the system in red/blue team simulations to check how it works in 
more realistic attack situations. 

3. CONCLUSIONS 

In this paper we presented an adaptive security system that can react to changes in 
network conditions and different kinds of threats. By putting together AI decision-making, 
some mathematical methods, and well-known cryptographic standards, the system can give a 
good level of protection. At the same time, it can serve as a base for future communication 
infrastructures that should be ready to face post-quantum challenges. 
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Abstract: The aim of this talk is to present new qualitative results—namely existence, uniqueness, boundedness, and 
asymptotic behavior—for a general class of doubly nonlinear parabolic problems with variable exponents 
and homogeneous Neumann boundary conditions. These problems arise naturally in various image 
processing applications, such as image denoising. Our analysis is conducted in the framework of weak solutions 
under minimal assumptions. The main analytical tools employed are a generalized weak maximum principle for 
doubly nonlinear parabolic equations in divergence form (utilized within the monotone method) and 
Rothe’s method for time discretization. 

Key words: Quasilinear parabolic equations; PDE’s with variable exponents; weak solutions to PDEs; image 
processing.  

1. INTRODUCTION
In this talk, we study the weak solutions of the following doubly nonlinear parabolic problem
with Neumann boundary conditions:

�

𝜕𝜕𝜕𝜕�𝑥𝑥,𝑢𝑢(𝑡𝑡,𝑥𝑥)�
𝜕𝜕𝜕𝜕

− 𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎(𝑥𝑥,𝛻𝛻𝛻𝛻)  =  𝑓𝑓(𝑥𝑥,𝑢𝑢(𝑡𝑡, 𝑥𝑥)),   (𝑡𝑡, 𝑥𝑥)  ∈  (0,∞)  ×  𝛺𝛺
𝑎𝑎(𝑥𝑥,𝛻𝛻𝛻𝛻)  ·  𝜈𝜈 =  0,  (𝑡𝑡, 𝑥𝑥)  ∈  (0,∞)  ×  𝜕𝜕𝜕𝜕

𝑢𝑢(0, 𝑥𝑥)  =  𝑢𝑢₀(𝑥𝑥),  𝑥𝑥 ∈  𝛺𝛺
  (1) 

where div 𝑎𝑎(𝑥𝑥,𝛻𝛻𝛻𝛻) denotes a general differential operator that may include, for example, a finite 
sum of 𝑝𝑝(𝑥𝑥)-Laplacians with different variable exponents. 

The use of variable exponent diffusion operators is well known in image processing, particularly 
for image denoising while preserving edges, and has demonstrated significant effectiveness in 
practice. 

2. CONTENT
We introduce a nonlinear operator 𝐾𝐾(𝑢𝑢) = 𝑣𝑣, where 𝑣𝑣 is the solution of the auxiliary problem:

⎩
⎨

⎧𝜕𝜕𝜕𝜕�𝑥𝑥, 𝑣𝑣(𝑡𝑡, 𝑥𝑥)�
𝜕𝜕𝜕𝜕

− 𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎(𝑥𝑥,𝛻𝛻𝛻𝛻) + 𝜆𝜆𝜆𝜆(𝑥𝑥, 𝑣𝑣) =  𝑓𝑓�𝑥𝑥,𝑢𝑢(𝑡𝑡, 𝑥𝑥)� + 𝜆𝜆𝜆𝜆�𝑥𝑥,𝑢𝑢(𝑡𝑡, 𝑥𝑥)�,   (𝑡𝑡, 𝑥𝑥) ∈  (0,∞) ×  𝛺𝛺

𝑎𝑎(𝑥𝑥,𝛻𝛻𝛻𝛻) · 𝜈𝜈 =  0,  (𝑡𝑡, 𝑥𝑥) ∈  (0,∞) ×  𝜕𝜕𝜕𝜕
𝑣𝑣(0, 𝑥𝑥) =  𝑢𝑢0(𝑥𝑥),  𝑥𝑥 ∈  𝛺𝛺

(2) 

for some fixed 𝜆𝜆 > 0. Using monotone operator techniques — based on the weak comparison 
principle for doubly nonlinear parabolic problems — together with variational methods, we prove 
that the mapping 𝐾𝐾 is well-defined and possesses at least one fixed point. 
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The existence of a solution for problem (2) is established via a time discretization scheme (Rothe’s 
method), combined with analytical tools developed by the author in a recent work (see Bogdan 
Maxim - A doubly nonlinear elliptic problem with variable exponents, homogeneous Neumann 
conditions and generalized logistic source, https://arxiv.org/abs/2506.23660) for the following 
quasilinear elliptic problem: 
 

�− 𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎(𝑥𝑥,𝛻𝛻𝛻𝛻) + 𝜆𝜆𝜆𝜆(𝑥𝑥,𝑈𝑈) =  𝑔𝑔(𝑥𝑥), 𝑥𝑥 ∈ Ω
𝑎𝑎(𝑥𝑥,∇𝑈𝑈) ⋅ 𝜈𝜈 = 0, 𝑥𝑥 ∈ 𝜕𝜕Ω         `    (3) 

                                     
Particular care is required in selecting convergent subsequences in suitable function spaces during 
the discretization procedure. 
 
From the constructive approach used to obtain the solution of (1), we derive upper and lower 
bounds as well as insights into its asymptotic behavior. 
In particular, as 𝑡𝑡 → ∞, the function 𝑢𝑢(𝑡𝑡,⋅) converges to a steady state of (1) in the 𝐿𝐿2 – norm. 
 
3. CONCLUSIONS  
 
We establish existence and uniqueness results for the Neumann problem (1), which, to the best of our 
knowledge, are new contributions to the literature, as most existing works focus on the Dirichlet case. 
Future work will address regularity properties of the solutions and further qualitative analysis of their 
long-time behavior. 
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Abstract 

The exploration phase of a reservoir involves integrating geological information from multiple and often uncertain 
sources. Seismic inversion techniques generate facies probability fields, while core data provide discrete lithological 
observations at well locations. These two types of information are typically uncorrelated and characterized by different 
levels of uncertainty. This study presents a comparative analysis of two approaches for conditioning facies probability 
fields to hard geological observations: the Element-Free Galerkin (EFG) method and Indicator Kriging (IK). Both 
methods incorporate spatial anisotropy to account for the directional continuity of geological structures. The EFG 
formulation utilizes anisotropic kernel functions within a regularized moving least squares framework, enabling smooth 
probabilistic updates informed by seismic-derived prior fields. In contrast, the IK method relies on an anisotropic 
covariance model to interpolate indicator variables, explicitly capturing spatial correlation and topology. The 
performance of both methods is evaluated using quantitative and spatial metrics, including prediction accuracy, 
uncertainty reduction, and structural consistency of the updated facies maps. Comparative results demonstrate how 
EFG and IK differ in their ability to represent anisotropy, reproduce hard data, and preserve the geological realism of 
the facies architecture, providing practical insights for their application in reservoir characterization workflows. 

Keywords: Element-free Galerkin; Indicator Kriging; Facies probability field; Facies data; Regularization; 

1. INTRODUCTION
The reliable estimation of facies distribution within a reservoir is essential for effective field

development and management planning. During the exploration phase, geologists and geophysicists 
collect complementary data describing subsurface rock types, their contacts, dimensions, and 
orientations, obtained from core analyses, outcrop studies, and seismic inversion. One of the key 
elements in geological modeling is the facies probability field, which must be conditioned to the 
facies observations obtained from wells. This study presents a comparative analysis between two 
conditioning approaches: a regularized Element-Free Galerkin (EFG) method and the Soft Indicator 
Kriging (SIK) in its blended form. Both methods aim to update prior facies probability fields derived 
from seismic inversion using well-based facies data. In the EFG formulation, the conditioning is 
achieved through a regularized mesh-free framework that integrates soft geological observations via 
a penalty term defined by the seismic-derived probability field, allowing for flexible anisotropy 
representation. In contrast, the SIK blended approach combines indicator kriging estimates with prior 
probabilities through a spatially adaptive weighting function, providing a Bayesian-like update.The 
comparative evaluation investigates the performance, stability, and interpretability of both methods 
in reproducing spatial facies patterns and balancing the influence between seismic information and 
well observations. 

2. CONTENT
The implementation of the EFG and SIK methods is carried out on a two-dimensional reservoir 
model. For a selected facies type, a prior probability field is available, and facies occurrence has been 
observed at thirteen spatial locations. The main objective is to condition these discrete facies 
observations to the prior probability field and generate a consistent, spatially coherent update of the 
facies probability distribution. In this study, the facies probability field is denoted by 𝑝𝑝, while the 
facies observation at location 𝑢𝑢 is represented by  𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢) ∈ {0,1} depending on whether the facies 
type is present (1) or absent (0) at that location. Figure 1 (left) illustrates the prior probability field of 
the considered facies. The facies observations, expressed in probabilistic form, include five locations 
where the facies type is present and nine locations where it is absent. The methodologies were applied 
under anisotropic properties of the facies distribution. 
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Regularized Element-Free Galerkin 
Within the Element-Free Galerkin (EFG) framework, for each unsampled location 𝑢𝑢 = (𝑥𝑥,𝑦𝑦) the 
updated probability is computed as, as  𝑝𝑝𝑢𝑢(𝑢𝑢) =  𝑋𝑋𝑇𝑇𝑎𝑎 , where the vector 𝑋𝑋𝑇𝑇 = [1 𝑥𝑥 𝑦𝑦] corresponds 
to the coordinates of the estimation location, and 𝑋𝑋𝑖𝑖𝑇𝑇 = [1 𝑥𝑥𝑖𝑖  𝑦𝑦𝑖𝑖] represents the coordinates of all 
locations 𝑢𝑢𝑖𝑖 = (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)  with known facies observations. The parameter vector 𝑎𝑎𝑇𝑇 = [𝑎𝑎0 𝑎𝑎1 𝑎𝑎2] is 
determined by minimizing the following cost function: 

𝐽𝐽(𝑎𝑎) = ∑ 𝑤𝑤𝑖𝑖 �𝑋𝑋𝑖𝑖𝑇𝑇𝑎𝑎 − 𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢𝑖𝑖)�
2

𝑖𝑖 + λ�𝑋𝑋𝑇𝑇𝑎𝑎 − 𝑝𝑝(𝑢𝑢)�
2

where 𝑤𝑤𝑖𝑖 are spatial weighting coefficients controlling the local influence of each observation, and 
𝜆𝜆 is a regularization parameter that balances the contribution of the observed facies data and the prior 
probability field. 
Soft Indicator Kriging (SIK) in blended form 
In the classical indicator kriging framework, the indicator variable for facies is defined as: 

𝐼𝐼(𝒖𝒖) = �1, if facies  occurs at location 𝑢𝑢
0,                                   otherwise.  

For a given unsampled location 𝑢𝑢, the kriged estimate of the facies probability is: 

𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢) = �λ𝑖𝑖
𝑖𝑖

 𝐼𝐼(𝑢𝑢𝑖𝑖) + λ𝑢𝑢 𝑝𝑝(𝑢𝑢) 

In Soft Indicator Kriging (SIK), the estimation parameters λ𝑖𝑖, λ𝑢𝑢 are derived by minimizing the 
estimation variance under the unbiasedness constraint.  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢) −  𝐼𝐼(𝑢𝑢)� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �λ𝑖𝑖
𝑖𝑖

+ λ𝑢𝑢 = 1.

A practical and widely adopted variant of SIK is the blended form, which linearly combines the 
indicator kriging estimate with the prior probability according to a spatially variable weighting factor 
α(𝑢𝑢): 

𝑝𝑝𝑢𝑢(𝒖𝒖) = 𝛼𝛼(𝒖𝒖)𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢) + [1 − 𝛼𝛼(𝒖𝒖)]𝑝𝑝(𝑢𝑢), 
where 𝛼𝛼(𝑢𝑢) is often expressed as a decreasing function of the kriging variance 𝜎𝜎2(𝑢𝑢), for example: 

𝛼𝛼(𝒖𝒖) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−
𝜎𝜎2(𝒖𝒖)
𝜎𝜎02

). 

This blending approach provides a Bayesian-like update of the probability field: areas with low 
uncertainty (close to hard data) are dominated by the kriging estimate, while regions of high 
uncertainty revert toward the soft prior. 

Figure 1 Facies probability fields; right-prior; middle EFG update; left SIK update 
Figure 1 illustrates the updated facies probability fields obtained using the EFG method (middle) and 
the SIK method (right). It can be observed that the EFG approach better preserves the prior probability 
distribution outside the influence zone of the facies observations. In contrast, the linear interpolation 
inherent to the SIK formulation tends to distort the prior information, assigning excessive weight to 
the kriging update beyond the regions constrained by data. 

3. CONCLUSIONS
Overall, the comparison highlights that the EFG method offers greater stability and better 
preservation of prior geological information, whereas the SIK approach provides stronger 
conditioning near observation points but may oversmooth or distort the prior away from data 
constraints. 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

123



MATHEMATICAL MODELLING OF INSTABILITIES IN 
COUNTER-ROTATING VORTEX PAIRS 

Cristian-Emil MOLDOVEANU1,*, Andrada-Livia CIRNEANU1,  

This paper presents a comprehensive analytical investigation of the main 
instability mechanisms governing the evolution and decay of longitudinal vortices, 
with emphasis on configurations relevant to aerodynamic wakes and vortex–pair 
interactions. Building on classical filament and Lamb-Oseen vortex models, the study 
addresses both long-wavelength and short-wavelength instability phenomena. The 
long-wave behaviour is examined through the stability of an isolated straight filament 
and the Crow instability in counter-rotating vortex pairs, highlighting the mutual 
induction processes that generate sinusoidal deformations and vortex reconnection. 
The analysis focuses on the internal vortex-core dynamics, demonstrating the neutral 
stability of Rankine-type cores and detailing the onset of elliptic instability under pure 
strain fields. The theoretical framework integrates linear perturbation approaches, 
Bessel-function-based solutions, and known desingularisation techniques for realistic 
core structures. The results provide a coherent foundation for understanding the 
mechanisms of vortex persistence, deformation, and decay, which are essential for 
numerical simulations, aircraft wake modelling, and broader fluid-dynamics 
applications. 

Keywords: Vortex dynamics; Crow instability; Elliptic instability; Vortex 
core stability; Longitudinal vortices. 

1. Introduction

Longitudinal vortices generated in the wake of an aircraft are among the 
most persistent and influential structures in aerodynamics. Originating from the 
pressure imbalance between the lower and upper wing surfaces, these vortices form 
intense, coherent counter-rotating pairs that can survive over large downstream 
distances [1]. Their evolution is central not only to the aerodynamics of lift-induced 
drag and energy dissipation but also to operational safety, since wake vortices 
represent a well-known hazard for following aircraft during take-off, landing, or 
carrier-based operations [2]. The long-lived coherence of these structures, 
especially in low-turbulence atmospheric conditions, has motivated decades of 
research involving experimental campaigns, numerical simulations, and analytical 
studies [3]. 

1 Faculty of Integrated Armament Systems, Military Engineering and Mechatronics, Military 
Technical Academy “Ferdinand I”, 39-49 George Coșbuc, Sector 5, Bucharest, Romania, 
cristian.moldoveanu@mta.ro, andrada.cirneanu@mta.ro  
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A defining feature of these longitudinal vortices is their susceptibility to a 
rich variety of vortex instabilities that govern their deformation, interactions, and 
ultimate decay. The stability of a vortex system is not governed by a single 
mechanism but by the interplay between several classes of perturbations, each 
acting at different spatial and temporal scales. At large wavelengths, counter-
rotating vortex pairs may experience Crow instability, a long-wave symmetric 
deformation driven by mutual induction. This mechanism causes the vortices to 
develop sinusoidal displacements out of phase, eventually leading to reconnection 
events that accelerate wake decay. At the opposite scale, short-wavelength 
perturbations act on the internal vortex-core structure and may interact with the 
local strain and rotation fields. One of the most important among these mechanisms 
is the elliptic instability, which arises when a vortex core subjected to an external 
strain field exhibits a resonant amplification of three-dimensional perturbations. 
The elliptic instability plays a critical role in the internal destabilisation and 
subsequent collapse of vortex tubes. It is widely recognised as a generic mechanism 
in fluid dynamics, with implications ranging from jets and wakes to rotorcraft 
aerodynamics and atmospheric flows [2]. 

These instabilities do not develop in isolation. The presence of external 
turbulence modifies the stability landscape by introducing additional 
perturbations, altering the effective strain rate, and facilitating vortex interaction 
and annihilation. While moderate levels of turbulence can accelerate wake 
destruction and mitigate the hazard posed to following aircraft, low-turbulence 
conditions allow the vortices to retain coherence over long distances, making the 
understanding of instability mechanisms even more critical. Moreover, operational 
constraints at major airports, combined with the introduction of large transport 
aircraft such as the Airbus A380, have intensified the need to refine wake separation 
standards based on accurate modelling of vortex instability and decay [2]. 

2. Mathematical model for the stability of a vortex filament

The stability of an isolated longitudinal vortex can be examined by 
modelling the vortex core as a thin filament of circulation 𝚪, whose centreline is 
described by the curve 𝑿ሬሬ⃗ (𝒔, 𝒕), parametrised by the arclength 𝒔and evolving in time 
𝒕. With the local induction approximation, filament motion is determined by its self-
induced velocity along the binormal direction (figure 1): 

𝑋⃗
̇ (𝑠, 𝑡) = 𝛾

௕ሬ⃗ (௦,௧)

ோ(௦,௧)
, 𝛾 = −

௰

ସగ
𝑙𝑛

௔

௅
, (1) 

where 𝑅(𝑠, 𝑡) is the local radius of curvature of the filament, 𝑏ሬ⃗ (𝑠, 𝑡) is the local 
binormal vector, 𝑎 is the radius of the vortex core, and 𝐿 is a characteristic length 
scale of the flow under consideration ( 1L/a  ). 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

125



y 

z 

x 

O 

s 

Base state 

Perturbed state 

Figure 1. Perturbed vortex filament 

For the base flow, we consider a straight vortex filament of constant 
circulation Γ, described by the equation: 

𝑋⃗(𝑠, 𝑡) = 𝑠𝑒௫ (2) 
where Rs (Figure 1). Since the curvature radius of a straight filament is infinite, 
its self-induced velocity is zero (the straight filament therefore remains motionless). 

An infinitesimal perturbation is added to the base flow (see Figure 1). 
𝑋⃗(𝑠, 𝑡) = 𝑠𝑒௫ + 𝑌(𝑠, 𝑡)𝑒௬ + 𝑍(𝑠, 𝑡)𝑒௭ (3) 

where |𝑌| << 1, |𝑍| << 1. The study of the evolution of the perturbed filament can 
therefore be reduced to analysing the geometric deformation of the curve 𝑋⃗(𝑠, 𝑡). 

Thus, we do not consider the evolution of the vortex filament in the 
tangential direction along the curve 𝑋⃗(𝑠, 𝑡). Taking into consideration 𝜏(𝑠, 𝑡), as the 
local tangent vector to the curve, after several developments of Eq. (1), we obtain: 

𝑋⃗
̇ (𝑠, 𝑡) × 𝜏(𝑠, 𝑡) = 𝛾

𝑏ሬ⃗ (𝑠, 𝑡)

𝑅(𝑠, 𝑡)
× 𝜏(𝑠, 𝑡) (4) 

𝑋⃗
̇ (𝑠, 𝑡) = 𝑌̇(𝑠, 𝑡)𝑒௬ + 𝑍̇(𝑠, 𝑡)𝑒௭ (5) 

𝜏(𝑠, 𝑡) =
𝑋⃗′(𝑠, 𝑡)

ห𝑋⃗′(𝑠, 𝑡)ห
(6) 

𝑏ሬ⃗ (𝑠, 𝑡)

𝑅(𝑠, 𝑡)
=

𝑋⃗′(𝑠, 𝑡) × 𝑋⃗"(𝑠, 𝑡)

ห𝑋⃗′(𝑠, 𝑡)ห
ଷ (7) 

𝑋⃗′ = 𝑒௫ + 𝑌′𝑒௬ + 𝑍′𝑒௭; 𝑋⃗" = 𝑌"𝑒௬ + 𝑍"𝑒௭; 𝜏 = 𝑒௫ + 𝑌′𝑒௬ + 𝑍′𝑒௭ (8) 
௕ሬ⃗

ோ
= −𝑍"𝑒௬ + 𝑌"𝑒௭, 𝑋⃗

̇
× 𝜏 = 𝑍̇𝑒௬ − 𝑌̇𝑒௭ (9) 

𝛾
௕ሬ⃗

ோ
× 𝜏 = 𝛾൫𝑌"𝑒௬ + 𝑍"𝑒௭൯, (10) 

where the products of infinitesimal terms have been neglected. 
We therefore obtain the linearised system: 

𝑌̇(𝑠, 𝑡) = −𝛾𝑍"(𝑠, 𝑡) ,  𝑍̇(𝑠, 𝑡) = 𝛾𝑌"(𝑠, 𝑡) . (11) 
For the linear system (11), we seek a solution of the form: 

𝑌(𝑠, 𝑡) = 𝑦ො𝑒௜(௞௦ିఠೖ௧), 𝑍(𝑠, 𝑡) = 𝑧̂𝑒௜(௞௦ିఠೖ௧) (12)
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where 𝑘 is the wavenumber of the perturbation 
For the existence of a non-trivial solution, the following condition must be 

imposed: 
𝜔௞

ଶ − 𝛾ଶ𝑘ସ = 0, (13) 

𝜔௞(𝑘) = ±𝛾𝑘ଶ = ±
௰௞మ

ସగ
𝑙𝑛 𝑘 𝑎,  𝜔௞(𝑘𝑎) = ∓

௰(௞௔)మ

ସగ௔మ
𝑙𝑛(𝑘𝑎). (14) 

We have chosen 1/𝑘 as the characteristic length scale of the flow. In Figure 
2, the oscillation frequency of the modes is plotted as a function of 𝑘𝑎, a vortex 
filament with 𝛤 = 1  and 𝑎 = 0.2.  

Figure 2. Oscillation frequency of the modes of the vortex filament 

3. Mathematical model for the Crow instability mechanism

In the previous section, we saw that a vortex subjected to a shear flow can 
become unstable with respect to long-wavelength perturbations. In the case of a pair of 
counter-rotating vortices, the flow induced by each vortex on the other locally 
corresponds to a pure shear. Therefore, the system is unstable [5]. Crow instability can 
develop under the action of natural external perturbations, providing a possible 
mechanism for the premature breakdown of aircraft wakes.  

We consider a pair of counter-rotating longitudinal vortices (see Figure 3) 
with circulations Γଵ = −Γ଴ and Γଶ = Γ଴, separated by a distance 𝑏. If this vortex 
pair is represented by two vortex filaments, the equations of the unperturbed 
filaments are: 

𝑋⃗ଵ(𝑠, 𝑡) = 𝑠𝑒௫ −
௕

ଶ
𝑒௬ − 𝑈ௗ𝑡𝑒௭, 𝑋⃗ଶ(𝑠, 𝑡) = 𝑠𝑒௫ +

௕

ଶ
𝑒௬ − 𝑈ௗ𝑡𝑒௭. (15)

where 𝑈ௗ =
௰బ

ଶగ௕
 is the descent velocity of the counter-rotating vortex pair in the 

unperturbed state, and 𝑠 is the longitudinal coordinate (along the 𝑒௫- axis). 
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Figure 3. Crow instability in a pair of counter-rotating vortices 

We now consider the vortex pair to be perturbed, in which case the equations 
of the vortex filaments become: 

𝑋⃗ଵ(𝑠, 𝑡) = 𝑠𝑒௫ −
௕

ଶ
𝑒௬ − 𝑈ௗ𝑡𝑒௭ + 𝑟ଵ(𝑠, 𝑡), 

𝑋⃗ଶ(𝑠, 𝑡) = 𝑠𝑒௫ +
௕

ଶ
𝑒௬ − 𝑈ௗ𝑡𝑒௭ + 𝑟ଶ(𝑠, 𝑡). 

(16) 

where the radial displacements 𝑟ଵand 𝑟ଶ are functions of time 𝑡 and of the 
longitudinal coordinate 𝑠, and represent the displacements of the vortex cores from 
their initial unperturbed positions 

𝑟ଵ(𝑠, 𝑡) = 𝑦ଵ(𝑠, 𝑡)𝑒௬ + 𝑧ଵ(𝑠, 𝑡)𝑒௭, 
𝑟ଶ(𝑠, 𝑡) = 𝑦ଶ(𝑠, 𝑡)𝑒௬ + 𝑧ଶ(𝑠, 𝑡)𝑒௭. 

(17) 

This system admits solutions of the exponential form 
𝑦ଵ(𝑠, 𝑡) = 𝑦̑ଵ𝑒௔௧ା௜௞௦, 𝑦ଶ(𝑠, 𝑡) = 𝑦̑ଶ𝑒௔௧ା௜௞௦,  

𝑧ଵ(𝑠, 𝑡) = 𝑧̂ଵ𝑒௔௧ା௜௞௦,𝑧ଶ(𝑠, 𝑡) = 𝑧̂ଶ𝑒௔௧ା௜௞௦. 
(18)

The expressions for 1ŷ , 2ŷ , 1ẑ  and 2ẑ  are given by the following algebraic system: 
𝜎𝑦̑ଵ = −𝑧̂ଵ[1 + 𝜔ௗ(𝑘𝑏)] + 𝑧̂ଶ𝜓(𝑘𝑏), 
𝜎𝑧̂ଵ = −𝑦ොଵ[1 − 𝜔ௗ(𝑘𝑏)] + 𝑦ොଶ𝜒(𝑘𝑏), 
𝜎𝑦̑ଶ = 𝑧̂ଶ[1 + 𝜔ௗ(𝑘𝑏)] − 𝑧̂ଵ𝜓(𝑘𝑏), 
𝜎𝑧̂ଶ = 𝑦ොଶ[1 − 𝜔ௗ(𝑘𝑏)] − 𝑦ොଵ𝜒(𝑘𝑏). 

(19) 

In the system of equations (19), the first mutual-induction function ௗ𝜒(𝑘𝑏), 
the second mutual-induction function ௗ𝜓(𝑘𝑏)ௗ(Figure 4), as well as the self-
induction function ௗ𝜔ௗ(𝑘𝑏)ௗ(Figure 5) [6] have been used.  

These functions are integrals that can be expressed analytically in terms of 
modified Bessel functions of the second kind [7]: 

𝜒(𝛽) = ∫
௖௢௦ ఉ௫

[௫మାଵ]య/మ
𝑑𝑥 = 𝛽

∞

଴
𝐾ଵ(𝛽), (20) 

𝜓(𝛽) = ∫
௖௢௦ ఉ௫ାఉ௫ ௦௜௡ ఉ௫

[௫మାଵ]య/మ
𝑑𝑥

∞

଴
= 𝛽ଶ𝐾଴(𝛽) + 𝛽𝐾ଵ(𝛽), (21) 

𝜔ௗ(𝛽) = ∫
௖௢௦ ఉ௫ାఉ௫ ௦௜௡ ఉ௫ିଵ

௫య
𝑑𝑥

∞

ௗ
=

ఉమ

ଶ
ቆ

௖௢௦ ఉௗାఉௗ ௦௜௡ ఉௗିଵ

(ఉௗ)మ
− 𝐶𝑖(𝛽𝑑)ቇ, (22) 

𝐶𝑖(𝛽) = ∫
௖௢௦ ௫

௫
𝑑𝑥

ఉ

଴
. (23)
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Figure 4. Mutual induction functions 

Figure 5. Self-induction function 

In the preceding integrals, some terms are not defined for 0 , which 
corresponds to a point located on the vortex filament itself. This issue arises from 
the non-physical nature of the vortex-filament approximation.  

To address this problem, the vortex's internal structure must therefore be 
taken into account. Several ‘desingularisation’ methods have been proposed. Most 
of these methods, however, have the drawback of being applicable only at 
wavelengths much longer than the vortex-core dimensions [8], [9]. The most 
common technique is the ‘cutoff’ method [5], which consists of removing a small 
segment of the filament on either side of the point where the calculation is 
performed. The optimal value for the cutoff parameter is 0.642

௥

௕
 [5], where 𝑟 is the 

vortex-core radius and 𝑏 is the separation distance between the two vortices. 
Figures 6-7 show the stability curves 𝜎(𝑘𝑏) for different values of the ratio 

𝑐/𝑏. We observe that for 𝑐/𝑏 = 0.10, only the symmetric modes are present. In this 
case (Figure 6), the wavelength corresponding to the maximum amplification rate 

0.810(𝛤଴/2𝜋𝑏ଶ), and the corresponding wavenumber 𝜆 =
ଶగ

௞
= 7.39𝑏 and 

85.0kb  . 
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Figure 6. Stability curves for 𝑐/𝑏 = 0.10 

 For 𝑐/𝑏 = 0.20 (Figure 7), the maximum amplification rate is 0.787(𝛤଴/
2𝜋𝑏ଶ), and the associated wavelength is 𝜆 = 2𝜋/𝑘 = 6.28𝑏 and  𝑘𝑏 = 1. 

Figure 7. Stability curves for 𝑐/𝑏 = 0.20 

Figure 8. Stability domain for the symmetric modes of the Crow instability 
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Figure 9. Stability domain for the antisymmetric modes of the Crow instability 

It is observed that long-wavelength perturbations (which are fully consistent 
with the assumptions made in the derivation of the Crow-instability model) occur 
for the symmetric modes over the entire range of 𝑐/𝑏  values considered for the 
vortex core. In contrast, the antisymmetric modes can produce long-wavelength 
instabilities only for vortices with larger values of 𝑐/𝑏. 

Figure 10. Example of Crow instability obtained in a counter-rotating vortex pair 

Figure 10 presents the results obtained from the numerical simulation of the 
evolution of a counter-rotating vortex pair for which the external conditions, 
including predominant atmospheric turbulence, allowed the development of a long-
wavelength Crow-type instability mechanism. 
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4. Mathematical model for the short-wavelength instabilities and for 
elliptic instability 

We consider as the base flow an isolated axisymmetric vortex, expressed in 
a polar coordinate system whose origin is located at the vortex core: 

𝑈ሬሬ⃗ ଴ = 𝑈ఏ(𝑟, 𝑡)𝑒ఏ, 𝑃(𝑟, 𝑡) = 𝜌 ∫
௎ഇ

మ(௥,௧)

௥
𝑑𝑟 (24) 

Small perturbations are added to the base flow 
𝑢ఏ

∗ (𝑟, 𝑡) = 𝑢ఏ(𝑟, 𝑡) + 𝑈ఏ(𝑟, 𝑡); 𝑢௥
∗(𝑟, 𝑡) = 𝑢௥(𝑟, 𝑡), 

𝑢௫
∗ (𝑟, 𝑡) = 𝑢௫(𝑟, 𝑡); 𝑝∗(𝑟, 𝑡) = 𝑝(𝑟, 𝑡) + 𝑃(𝑟, 𝑡). 

(25)

Since the system of equations governing the perturbations is a linear system 
of differential equations, the general solution can be sought as a linear combination 
of normal modes: 

[𝑢௫; 𝑢௥; 𝑢ఏ; 𝑝/𝜌] = [𝑢ො௫(𝑟); 𝑢ො௥(𝑟); 𝑢ොఏ(𝑟); 𝑝̂(𝑟)] ⋅ 𝑒௜(௞௫ା௠ఏିఠೖ௧) (26) 
For the interior of the vortex core (𝒓 < 𝒄), after several intermediate steps, 

the following equations are obtained: 
𝑟ଶ𝐷ଶ𝑢ො௫ + 𝑟𝐷𝑢ො௫ + (𝛽ଶ𝑟ଶ − 𝑚ଶ)𝑢ො௫ = 0. (27) 

The differential equation (27) is a Bessel equation whose independent 
solutions are the Bessel functions  𝐽௠(𝛽𝑟) and 𝑌௠(𝛽𝑟). Since the solution is not 
limited for 𝑟 → 0, the solution of equation (27) is: 

𝑢ො௫(𝑟) = 𝐴𝐽௠(𝛽𝑟), (28) 
where 𝐴 is an arbitrary constant. We then obtain the pressure: 

𝑝̂ = 𝐴
ఊ

௞
𝐽௠(𝛽𝑟). (29) 

Experimental observations show that instabilities exist in the vortex core. 
This is the case for a pair of counter-rotating vortices, which, in addition to the long-
wavelength Crow instability, also exhibit a short-wavelength instability affecting 
the internal structure of the vortices. We can see that the vortex cores are affected 
and that the vortex-core lines exhibit oscillatory distributions. It therefore appears 
that the pure shear field induced here by a neighbouring vortex is at the origin of a 
new instability mechanism: the elliptical instability. Historically, the elliptical 
instability was identified by [10] in the 1970s for vortex rings. In that case, the shear 
field is induced by the vortex ring on itself.  

To analyse the elliptical instability analytically, the base flow is considered 
to be a solid-body rotating vortex subjected to a pure shear deformation field in the 
plane perpendicular to the vortex axis: 

 𝑈௫ = 𝜀𝑥,𝑈௬ = 𝜀𝑦, 𝑈௥ = 𝜀𝑟 𝑠𝑖𝑛 2 𝜃, 

𝑈ఏ = 𝑟 + 𝜀𝑟 𝑐𝑜𝑠 2 𝜃, 𝑃 = (1 − 𝜀ଶ)
௥మ

ଶ
. 

(30) 

We consider the case of an inviscid flow with perturbations small compared 
to the velocity of the base flow.  
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The system of equations governing the perturbations is a linear system with 
coefficients independent of the variables 𝒙 and 𝒕, therefore the general solution can 
be written as a linear combination of normal modes: 

 [𝑢௫; 𝑢௥; 𝑢ఏ; 𝑝/𝜌] = 𝑞 ⋅ 𝑒௜௞௫ାఠ௧, (31) 
with 𝑞 = [𝑢ො௫(𝑟, 𝜃); 𝑢ො௥(𝑟, 𝜃); 𝑢ොఏ(𝑟, 𝜃); 𝑝̂(𝑟, 𝜃)]. 

Figure 11. Example of elliptic instability obtained in a counter-rotating vortex pair 

Figure 11 presents the results obtained from the numerical simulation of the 
evolution of a counter-rotating vortex pair for which the external conditions, 
including predominant atmospheric turbulence, allowed the development of a short-
wavelength elliptic-type instability mechanism. 

5. Conclusions
The present study provides a comprehensive analytical framework for

understanding the main instability mechanisms governing counter-rotating vortex 
pairs, with emphasis on both large and small-scale processes that dictate their 
evolution, deformation, and eventual decay. By combining classical vortex filament 
theory, linear perturbation methods, and detailed modelling of vortex-core 
dynamics, the work clarifies how distinct classes of perturbations interact with the 
base flow to shape the stability characteristics of aircraft wake vortices and 
analogous aerodynamic configurations.  

At large spatial scales, the Crow instability emerges as the dominant 
mechanism controlling the mutual deformation of counter-rotating longitudinal 
vortices. This long-wavelength symmetric mode, driven by mutual induction 
between the two vortices, leads to sinusoidal displacements of their centrelines and 
culminates in reconnection events and accelerated wake decay. The analytical 
results obtained, supported by the evaluation of mutual and self-induction functions 
expressed in terms of modified Bessel functions, confirm the sensitivity of the 
instability growth rate to the vortex-core size, thus providing a quantitative 
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foundation for predicting the operational behaviour of wake vortices in flight 
conditions. 

In contrast, the short-wavelength regime is governed by mechanisms that 
act within the vortex core itself. The analysis of an axisymmetric vortex subjected 
to external shear reveals that local perturbations satisfy Bessel-type differential 
equations, indicating the presence of characteristic oscillatory solutions within the 
core. When the vortex is exposed to a pure strain field, such as that induced by a 
neighbouring vortex, these internal perturbations may resonate with the base flow, 
leading to the emergence of elliptic instability. Historically identified in vortex 
rings, this instability mechanism is shown to play an equally significant role in the 
dynamics of longitudinal vortices. The present formulation highlights how the 
coupling between solid-body rotation and external strain yields a three-dimensional 
amplification mechanism that destabilises the vortex core and promotes a transition 
to turbulence. 

Taken together, the long-wavelength Crow instability and the short-
wavelength elliptic instability provide a unified explanation for the multi-scale 
degradation of counter-rotating vortex pairs. Their complementary effects illustrate 
that wake-vortex decay is not driven by a single process but by a cascade of 
instability phenomena acting at different spatial scales, from global sinusoidal 
deformation to local core oscillations. The analytical results obtained in this paper 
thus offer a coherent theoretical foundation applicable to aircraft-wake modelling, 
rotorcraft aerodynamics, numerical simulation of trailing vortices, and the broader 
study of coherent structures in turbulent flows. In practical terms, a rigorous 
understanding of these instability mechanisms is essential for improving wake-
vortex prediction models, refining airport-separation standards, and developing 
future strategies for active or passive vortex-attenuation technologies. 
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Abstract 

In this paper, we consider an almost complex metallic structure associated with an almost complex 
structure, referred to as almost Hermitian metallic manifolds, and investigate certain properties of their 
submanifolds. We focus on the structures induced on these submanifolds and examine their characteristics 
in this context. Furthermore, several illustrative examples of such submanifolds within almost Hermitian 
metallic manifolds are provided. 

Key words: Riemannian manifold; almost complex metallic structure; almost Hermitian metallic manifolds; sectional 
curvature; submanifold. 

1. INTRODUCTION

The real metallic number, denoted by 𝑝𝑝 ,𝑞𝑞 , is the positive solution of the equation 𝑥𝑥 2 =  + 
𝑞𝑞 , where 
p and q are positive integers and  ∆ = 𝑝𝑝2 + 4𝑞𝑞 > 0. These 𝜎𝜎𝑝𝑝,𝑞𝑞 numbers belong to the family of 
metallic means, introduced by Spinadel (2002), and represent a natural generalization of the golden 

number 𝜑𝜑 = 1+√52 . 

Golden and metallic structures are examples of polynomial structures on manifolds, as originally 
defined by Goldberg and Yano (1971). The almost complex golden structure was first introduced by 
Crasmareanu and Hretcanu (2008). Since then, the geometry of metric manifolds endowed with these 
types of polynomial structures has been the subject of extensive study.  

The investigation of metallic structures on Riemannian manifolds was initiated in the work of 
Hretcanu and Crasmareanu (Hretcanu C.E.; Crasmareanu M, 2013). Subsequently, the study of 
submanifolds within metallic Riemannian manifolds was further developed in several papers, 
including Hretcanu and Blaga (Hretcanu C.E., Blaga A.M., 2018 & 2021).  

A more recent contribution introduced a generalization of the golden structure, referred to as the 
almost (𝛼𝛼,𝑝𝑝)-golden structure, and explored the geometry of Riemannian manifolds endowed with 
this structure (Hretcanu and Crasmareanu, 2023). The study of the corresponding submanifolds was 
later continued in (Hreţcanu C.E., Druţă-Romaniuc S.L, 2024).  

2. CONTENT

The complex analogue of the real metallic number, known as the complex metallic number, arises as 
a solution to the equation 𝑥𝑥2 = 𝑝𝑝𝑝𝑝 + 𝑞𝑞, where 𝑝𝑝 and 𝑞𝑞 are real numbers satisfying 𝑝𝑝2 + 4𝑞𝑞 < 0.  
Let 𝑀𝑀 be a smooth manifold. An endomorphism Φ of the tangent bundle 𝑇𝑇𝑇𝑇 is called an almost 
complex metallic structure on 𝑀𝑀 if it satisfies Φ2 = 𝑝𝑝Φ + 𝑞𝑞𝑞𝑞, where 𝐼𝐼 denotes the identity 
endomorphism. The pair (𝑀𝑀,Φ) is then referred to as an almost Hermitian metallic manifold 
(Hretcanu & Blaga, 2025). In the special case 𝑝𝑝 = 𝑞𝑞 = 1, one obtains an almost Hermitian golden 
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manifold, and some properties of the almost complex golden structure were recently investigated by 
Hrețcanu and Cirlan (2025). 

In this paper, we explore various frameworks in which almost complex metallic structures are 
expressed through the language of almost complex geometry. We derive several properties of 
isometrically immersed submanifolds within almost Hermitian metallic manifolds and examine the 
characteristics of holomorphic and totally real submanifolds in this setting. Furthermore, we focus on 
the characterization of semi-invariant submanifolds in almost Hermitian metallic manifolds and 
provide illustrative examples. Finally, we introduce the notions of Φ-holomorphic sectional curvature 
and Φ-holomorphic bisectional curvature for such manifolds and investigate their fundamental 
properties. 

3. CONCLUSIONS

The study of quadratic endomorphisms on a given manifold has recently been broadened through the 
introduction of a new class. If a Riemannian metric is incorporated under an appropriate compatibility 
condition, it gives rise to a novel geometric framework. The submanifolds of such manifolds also 
inherit noteworthy structures, opening new avenues for research and further enriching the field of 
differential geometry. 
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Abstract 

Nowadays, data privacy and commercial cloud services are major concerns for technology users. In this context, users 

are open to adopt self-hosted cloud solutions, investing in equipment and facilities, which ensure direct control over 

data, enhanced security and economic advantages thorough scalable setups using budget-friendly hardware. As a 

solution, the personal cloud storage centre integrates a Raspberry PI 5 with an 8TB running Nextcloud in a Docker 

container. The system replicates essential functions encountered in commercial cloud services maintaining date 

property and security through user accounts and two-factor authentication. For remote control, two methods are 

analysed, one method based on VPN, and the second one based on Zero Trust Access (ZTNA). This analysis allows to 

evaluate complexity, performance and security trade-offs commercial cloud service.  Obtained results prove that a self-

hosted cloud based on Zero Trust access is a more reliable and secure alternatives to VPNs services. 

Key words: VPN, Zero Trust, Network-Attached Storage (NAS). Raspberry Pi 5. 

1. INTRODUCTION

Concerns about data privacy in mainstream cloud storage services have led to growing interest in 

self-hosted cloud servers. Users are increasingly aware that major providers may analyse or 

deduplicate their files to optimize services [1]. Therefore, many are steering towards personal cloud 

solutions that keep data under their own control [1]. A private, self-hosted cloud offers improved 

security, as data remain in a controlled environment not shared with third-party servers [2]. It also 

provides cost and scalability benefits such as an inexpensive hardware (e.g., a Raspberry Pi) can 

serve as a low-power server with terabytes of storage, in this way allowing avoiding fees and 

capacity limits imposed by commercial services [2]. In addition, self-hosted solutions based on 

open-source platforms like Nextcloud or ownCloud offer customized options and full control over 

the server, and a reliable synchronization and remote control. This approach enhances privacy and 

strongly ensures energy efficiency when comparing with large-scale commercial data centres.  

2. CONTENT

We present a stable personal cloud storage system built on a Raspberry Pi 5 with an 8 TB HDD 

NAS (Network-Attached Storage) drive, running Nextcloud in a Docker container as the core 

platform (see software and hardware perspectives in Fig. 1 and Fig. 2). The system replicates the 

file synchronization and sharing functionality of traditional cloud storage services while preserving 

full data ownership and control [2]. Key features such as user accounts and two-factor 

authentication (2FA) are implemented to fortify access to the server. To enable secure remote 

access to this private cloud (addressing a key challenge of personal clouds [1]), we evaluate two 

connectivity methods: a VPN-based solution and a Zero Trust Network Access (ZTNA) approach. 

A traditional VPN creates an encrypted tunnel for remote users but typically grants broad network 

access once connected, increasing the attack surface [3]. In contrast, a Zero Trust model follows a 
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“never trust, always verify” principle, granting access only to specific services after verifying user 

identity [3]. We examine both approaches in terms of complexity, performance, and security [4].  

Fig. 1: NAS Software Diagram. 

Fig. 2: NAS Hardware Diagram. 

3. CONCLUSIONS

Our findings indicate that a self-hosted cloud can achieve functionality comparable to public cloud 

services while significantly improving data privacy and control. In particular, Zero Trust access 

minimizes implicit trust and exposure, offering a robust alternative to VPN tunnels for personal 

cloud storage. 
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Abstract 

The world of Electronic Sports is rapidly evolving around us. Player development, audience engagement, and team 
strategy have reached a level higher than ever before. In this study, an Extreme Gradient Boosting (XGBoost) regressor 
was employed on basic observable data such as kills/deaths ratios in order to predict a player’s kill count in upcoming 
Counter-Strike matches, based on their historical performance. The model, when evaluated using data computed from 
the exploratory analysis, demonstrated a precision of 78% in predictions within a range of 5 kills. The classification 
metrics, used in tracking the player’s performance, presented an average accuracy of 67%, a recall of 69%, a precision 
of 65% and an F1 score of 66%. These findings were obtained from data collected during an amateur game and did not 
include personal or psychological information about the player that could significantly improve the classification. 
Key words: Player Performance Prediction; Machine Learning; XGBoost; Regression; Classification Metrics; 
Kill/Death Ratio; Performance Analytics; Predictive Modeling; Data Analysis. 

1. INTRODUCTION

Counter-Strike is a free-to-play first-person shooter game developed by Valve that involves two
teams, each of five players. Over time, the game has transitioned from small-scale local environments 
to major professional tournaments, currently attracting audiences of up to almost three million 
concurrent viewers. 

    This paper investigates the application of a machine learning model for predicting a player’s future 
kill count in Counter-Strike, a key metric frequently used to quantify individual in-game performance 
relative to peers. The data set will be composed of other statistics that can also project the player’s 
performance, such as damage per round, deaths, map, time, and others. 

2. CONTEXT

2.1. Data and Features

    Counter-strike is played on servers provided by the game, but there is also the possibility of creating 
your own server. One such platform that provides community servers is Faceit. It serves as a platform 
for players to meet online and create pre-made teams with which they can play against others. Faceit 
has an application programmable interface (API), available for everyone with an account on the 
platform, that can provide us with important match data in the form of JSON files.  

    The following data has been extracted through the API: kills, the enemy team’s average elo, the 
time at which the game was played, the rounds of a game, deaths, the average damage per round and 
the player’s elo as numerical values. We also extract the map as a categorical value and the won or 
lost status of the match as a binary value. These have been used to compute the variables necessary 
for the model’s predictions. 

2.1.1. Elo difference 

    The elo rating system is a method of calculating a player’s skill level. It is mainly used in the chess 
rating system, but also in other sports. Since Faceit already provides us with a functioning elo system, 
we will make use of it. To capture the differences between matches in which the player has been 
paired against opponents of a larger skill gap, we will consider the absolute value of the difference 
between the mean of the enemy team’s elo and the player’s elo.  

2.1.2. Time 

    Human activity patterns commonly exhibit periodicity, which may indirectly influence gameplay 
performance depending on the time of day. Therefore, we try to capture the moments that the player 
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most often starts a match on Faceit. To better express the distances between time intervals we model 
a sine function which in turn represents a clock. 

2.1.3. Moving Average and slope 

    The “Hot Hand” effect suggests that recent successful actions may increase the likelihood of 
continued high performance. Since the analysis relies exclusively on historical performance 
indicators, derived features are designed to capture potential temporal trends associated with changing 
form. To achieve this, we will be using two different methods of transforming our data: moving 
average and moving slope. 

    The moving average transforms our data in windows measuring averages across slices of five to 
twenty matches. An exponentially weighted moving average (EWMA) will be used. 

    A player’s form will be constant across a specific timeline, because of factors like mental state, 
decision making and underlying skill. To transpose it into matches and kills, we know that the current 
form of a player has a noticeable correlation with its recent form; therefore, the most weight will be 
attributed to the most recent match. EWMA will be used regarding the kills, deaths and average 
damage per round. Since the EWMA cannot indicate changing trends, we will use the regression line 
of the last five played matches. The sign of the slope serves as an idea of the current trend, a change 
in the sign indicating a change in performance. We call this a moving slope. 

2.1.4. Winrate and winstreak 

    Besides the base performance that a player can only change through rigorous training and 
preparation, there are also several psychological factors that can affect the way he plays. One of them 
is how he reacts to a win or loss and how he manages to get over the result of a match. Because of 
that, we will implement an EWMA-based winrate. Another variable we want to add is the current 
streak our player is on. We will split this streak into 2 new variables: the sign of the streak and the 
number of streaks. This is done to differentiate losing from winning streaks. 

2.1.5. The map 

    Maps can easily be correlated in today’s sports with playing on a different football field or 
basketball court, or different tennis courts where you could play on grass or clay. For our model, the 
best way to present this data is through one-hot encoding. 

2.2. The model 

    The chosen model for this analysis is Extreme Gradient Boosting for regression, since it can easily 
capture nonlinear relations between the variables. Due to the volatility of the match rounds, we 
predicted a player’s kills per round rather than kills, then we multiplied by the number of rounds for 
that match, a variable not used in the analysis. This metric allows for a more stable prediction. 

2.3. Predictions 

    For results, a categorical way of making our predictions is adopted. Performance has been modelled 
based on the player’s ability to surpass his mean of kills in a match: yes, for above the mean and no 
for below; therefore, the results will be judged based on classification metrics. Results are as follows: 
67% accuracy, a recall of 69%, a precision of 65%, an F1 score of 66%. We will also model a 
custom accuracy as a variable that quantifies a prediction that is within the five kills range from the 
actual kills since the match results can be very volatile, achieving a 78% accuracy. 

3. CONCLUSIONS  

    The study demonstrated that player performance can be predicted using basic in-game statistics 
through an XGBoost model. The approach achieved 78% accuracy within a ±5-kill range and a 67% 
overall classification accuracy, proving that observable data can still be proven useful despite the 
absence of psychological or contextual variables, which strongly influence human performance. The 
model achieved stronger predictive capability for amateur-level data, likely due to higher inter-match 
variability. In contrast, performance was more difficult to predict for advanced players, whose actions 
are generally more consistent. 
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DOUBLE COUNTING – THE SECRET KEY IN THE ARCHITECTURE OF 
MATHEMATICAL PROBLEM SOLVING 
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Abstract: Double counting is an elegant and highly effective mathematical method used to solve 

problems across various fields of mathematics. The core idea involves identifying a single 
quantity and counting it in two distinct ways. This approach leads to clever and unexpected 

relationships between different mathematical objects or structures. The main challenge lies in 
determining what exactly should be counted. In this paper, we aim to explore how double 

counting can offer original, efficient, and creative solutions to a wide range of problems. We 
will examine applications of this method in contexts such as permutations, grids, student sets, 

and geometry, drawing on problems featured in international mathematical competitions. 
 

Key words: Double counting; Combinatorial methods; Mathematical relationships; Competition problems; 
Enumerative combinatorics; Problem-solving strategies 

1. Introduction 

Double counting is based on identifying a quantity that can be counted in two different ways. 
Throughout this presentation, we will examine how this method can be applied to four problems 
taken from different areas of mathematics. We will explore double counting in the context of 
permutations, enumerative combinatorics, grid-based problems, and geometric problems, each 
illustrating a distinct perspective on the power and versatility of this technique. 

2. Content 

1. Double Counting in Permutations(IMO 1987) 

Let pn(k) be the number of permutations of {1,2, … , n} that have exactly k fixed points.  

Prove that � k pn(k)n
k=0 = n! 

Solution. Count ordered pairs (x,σ)where σ is a permutation of  {1, … , n} and x is a fixed point 
of σ.  Fix x and the number of permutations fixing x is (n − 1)!, hence in total n!  

On the other hand, if σ has exactly k fixed points, then there are k choices for x.  Summing over 
all permutations gives ∑  n

k=0 k pn(k). Equating the two counts yields the identity. 

2. Double Counting in Class–Student Incidence(Iran 2010) 

A school has n students. Each class has at least two students, and if two distinct classes share at 
least two students, then their sizes are different. Prove that the total number of classes is at most 
 (n − 1)2. 

Solution. For each class of size x, it contributes (x2) unordered student pairs; by hypothesis no 
pair is counted in two different classes. Let Xx be number of classes of size, Xx �x2� ≤ �n2�.  
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�  
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=
n(n − 1)

2
⋅ 2  �1 −  

1
𝑛𝑛
� = (n − 1)2. 

So the number of classes is at most (n − 1)2. 

3. Double Counting in Grid Colorings(Romania TST 2009) 

Let N = n2 + 1. An N × N grid of unit squares is colored with N colors, each color appearing 
exactly N times. Show that there exists a row or a column that contains unit squares of at least 
n + 1 colors. 

Solution. Let ci be the number of colors in column i and li the number of colors in row i. For a 
color t, let at be the number of columns and bt the number of rows on which color t appears. 
Since color t covers N cells, we have atbt ≥  N.Double counting color–column and color–row 
incidences yields∑ ciN

i=1 = ∑ atN
t=1   and    ∑ liN

i=1 = ∑ btN
t=1 . 

Assume for contradiction that every row and column uses at most n colors, i.e. ci , li ≤ n.  Then 

(nN)2 ≥  (∑ ci N
i=1 ) (∑ li  N

i=1 ) = (∑ atN
t=1 )(∑ btN

t=1 ) ≥ �� �atbt
N

t=1
�
2

≥ N2(n2 + 1). 

a contradiction. Thus some row or column contains at least n + 1 colors. 

4. Double Counting in Plane Geometry(IMO 1989) 

Let S be a set of n points in the plane with no three collinear. For every P ∈ S there are at least 
k points of Sequidistant from P. Prove that k   <    1

2
+ √2n. 

Solution. Count triples �Ai, �Aj, Aℓ�� with i, j,ℓ distinct and AiAj = AiAℓ. Lower bound: for each 
Aithere are at least �𝑘𝑘2� unordered pairs {Aj, Aℓ}, so the total is  Triples   ≥   n�𝑘𝑘2� 
Upper bound: for each unordered pair �Aj, Aℓ� there are at most two choices of Ai, since no three 
points are collinear (at most two points can lie on the perpendicular bisector of AjAℓ). Hence 

Triples   ≤   2�𝑛𝑛2� = n(n − 1). Combining gives n(n − 1)   ≥ n k(k−1)
2

⟹ 2(n − 1)   ≥   k(k −

1). Solving the quadratic inequality in k yields k   <    1
2

+ √2n. 

3.Conclusion  Double counting offers elegant and unexpected solutions across multiple areas of 
mathematics. Its flexibility and simplicity make it a fundamental tool in both problem solving 
and mathematical enrichment. 
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Abstract 

 Vector calculus, vector space theory, and signal analysis represent interconnected mathematical 
pillars underlying modern engineering systems. Vector calculus provides a geometric framework for 
describing multidimensional fields, while signal and system theory offers analytic tools for processing and 
interpreting time- and space-dependent information. The inclusion of vector space and matrix methods 
further enables efficient representation, transformation, and computation of signals in both continuous and 
discrete domains. This paper explores the synthesis of these concepts and demonstrates their role in modeling 
electromagnetic wave propagation, highlighting the synergy between differential operators, vector spaces, and 
matrix-based system analysis. 

Key words: Vector Calculus, Signal Theory, Vector space methods 

1. Introduction

The interplay between vector calculus and signal theory forms the foundation for modeling
physical processes and engineering systems. Vector calculus focuses on the study of continuous 
vector fields that describe how quantities vary spatially, while signal theory emphasizes temporal 
and frequency-domain representations.[1],[2] The combination of these two allows engineers to 
analyze systems where both spatial and temporal variations are essential—such as electromagnetic 
fields, sound propagation, and fluid flow.[3] 

In addition, vector space and matrix methods provide the algebraic structure needed to model 
and manipulate multidimensional signals and systems. Many engineering problems—filter design, 
system identification, and control—can be expressed as linear transformations in vector spaces, 
where matrices serve as operators acting on signal vectors.[4] 

This paper outlines the theoretical framework connecting vector calculus, vector spaces, and signal 
theory, and illustrates their integration through an electromagnetic field application. 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

144

mailto:eduard_roland.kecs@stud.fils.upb.ro
mailto:robert_alfred.kecs@stud.fils.upb.ro


2. Content 

A key engineering example uniting these theories is electromagnetic wave propagation. Maxwell’s 
equations describe electric E and magnetic B fields as coupled vector signals in space and time. 
Combining them yields the vector wave equation, representing multidimensional signal 
propagation. Discretizing this system through finite element or matrix methods links continuous 
field theory to numerical computation.[3],[6] 

In addition to electromagnetics, vector calculus finds extensive use in other engineering domains:  

- Fluid dynamics and climate modeling: the divergence and curl operators quantify ocean 
currents, atmospheric vortices, and energy transfer.[3] 

 - Structural mechanics: gradients of displacement fields yield strain tensors, while 
divergence of stress tensors governs equilibrium conditions.[6] 

 - Heat transfer: Fourier’s law uses the gradient operator to describe thermal flow, with 
divergence representing heat accumulation or loss.[1][2] 

These applications demonstrate how vector calculus, combined with matrix and signal-space 
methods, enables engineers to model and simulate real-world systems that vary across both space 
and time. 

 

3.  Conclusion 

 Vector calculus, signal theory, and vector space methods together form a unified 
framework for understanding and designing engineering systems governed by multidimensional 
signals and fields. Vector calculus captures spatial variations, signal theory describes temporal and 
spectral properties, and matrix methods provide computational efficiency. Their integration drives 
advances in electromagnetics, fluid mechanics, thermodynamics, and structural analysis—fields 
where mathematical operators translate directly into physical meaning and engineering innovation. 
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Abstract 

The rapid evolution of malware, specifically spyware, and credential harvesting techniques has revealed 
critical vulnerabilities in single-factor digital signature mechanisms. This scientific paper investigates the necessity of 
employing multi-factor authentication as a central element in achieving cryptographic resilience and maintaining 
data integrity within digital signature systems. The focus is placed on the interplay between cryptographic key 
management, secure channel establishment and dynamic identity verification. The analysis incorporates threat 
modeling and security assurance processes to assess the impact of layered authentication on overall system 
robustness. The results demonstrate that integrating multi-factor authentication into digital signature verification 
not only strengthens non-repudiation guarantees but also enhances resistance to data exfiltration facilitated by 
spyware. 

Key words: spyware; authentication; cybersecurity; digital signature; identification. 

1. INTRODUCTION
Authentication represents a fundamental component of cybersecurity, serving as the process through
which systems verify the legitimacy of users, devices or external entities attempting to access
protected resources and information. Traditionally, authentication has relied on a single-factor
authentication, which has been the most commonly used method worldwide. However, in modern
threat landscapes, such single-factor systems have proven increasingly inadequate.
Passwords, although the most widespread form of authentication, are highly susceptible to
compromise. Attackers can easily obtain them through methods such as deploying spyware capable
of capturing keystrokes and extracting stored authentication data from browsers or memory.

2. CONTENT
This chapter situates the experimental simulation within the present scientific work and presents a
simplified technical analysis of how multi-factor authentication constrains attackers who steal a
victim’s credentials. The objective is to evaluate the effectiveness of a four-factor authenticator,
consisting of an account identifier, a static password, a time-based one-time password generated by
a third-party authenticator application and a user PIN, against an assumed adversary who has
deployed spyware and is attempting to exfiltrate digital signing credentials for use in cyberattacks.
The emphasis is explicitly defensive and evaluative, no operational methods for delivering or
developing malware are provided and the precise infection vector used by the adversary in the
simulation is intentionally omitted, because exploitation techniques fall outside the scope and ethical
remit of this research.
The adversary is modeled as a remote actor in possession of a generic spyware payload capable of
capturing input data from the victim host like keystrokes and in-memory strings, saving the collected
data to a local file. The proposed model assumes that the time-based one-time password generator
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runs on a separate device, therefore, the attacker cannot steal these codes via the spyware deployed 
to the host as in Figure 1. 
 

 
Figure 1. Remote digital signature application interface 

 
Treating spyware as an already-present capability allows the analysis to concentrate on how multi-
factor constructions prevent compromise of the signing authority once an attempt is made to capture 
credentials using the method described above. 
To make the analysis concrete, the simulation follows the real user steps outlined earlier. After the 
attacker captures the account ID and static password via host instrumentation, the remote digital 
signing application requests a time-based one-time password as in Figure 2. The attacker therefore 
fails because the time-based one-time password is generated by an independent authenticator 
application and requires physical possession of that device. 
 

 
Figure 2. Time-based one-time-password request 

 
The account’s subsequent PIN, an additional knowledge factor entered only after successful multi-
factor authentication, provides a final barrier, which was not previously entered and was not 
exfiltrated by the spyware, would prevent access to the operation that releases the signing key as in 
Figure 3. Thus, layered checks create a compound mode of failure for the attacker. 
 

 
Figure 3. Request account PIN 

 
3. CONCLUSIONS 
 
The simulated exercise demonstrates that, under the assumptions of device separation and sequential 
multi-factor control, a spyware agent is substantially constrained and unable to replicate digital 
signature credentials despite capturing static authentication data. This result provides empirical 
support for the central thesis of this work, namely, the migration of digital signature systems from 
single-factor architectures to multi-factor architectures that significantly enhance resilience. 
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Abstract: 

This study examines the electrospinning process mathematically and physically in order to discover important variables 
that affect fiber morphology, jet stability, and production efficiency. Electrospinning is an important technique in 
biomedical engineering because of its capacity to produce very thin fibers with high surface-area-to-volume ratios and 
variable porosity. It has applications in wound healing, tissue engineering, drug delivery, and implant coatings. However, 
the technology has limitations in process control, scalability, and consistency of fiber qualities. The effects of voltage, 
flow rate, spinneret-to-collector distance, and fluid viscosity on jet formation and fiber diameter using known theoretical 
models are analyzed. Fluid dynamics equations are utilized to investigate the relationship between electric field strength, 
jet thinning, and instabilities. Novel design improvements for electrospinning setups are proposed, such as a vertically 
moving spinneret, as well as the utilization of external magnetic fields to control fiber spatial deposition. These 
advancements aim to improve control over fiber architecture, functional grading, and scalability in medical and industrial 
applications. This project underlines the need to understand the physical principles underpinning electrospinning in order 
to guide process innovation by integrating mathematical modeling with practical design recommendations. 

Key words: electrospinning; nanomaterials; biomedical application; mathematical modeling; fiber morphology 

1. INTRODUCTION 
Electrospinning is an electrodynamic process that enables the fabrication of ultrafine polymer fibers. 
This paper is meant to study this complex method of producing nanofibers with various applications, 
especially in the medical field. The study underlines the physical principles underpinning 
electrospinning in order to guide process innovation by integrating mathematical modeling with 
practical design recommendations.  

2. CONTENT 
The setup used to form thin fibers mainly contains a syringe, a power source and a grounded collector. 
The electrospinning process functions by applying high voltage (10-30kV) to the metal, conducting 
needle of a syringe that is loaded with a polymer solution, which contains polymer dispersed in 
solvent. As the current travels through the needle and reaches the solution, the electric force 
overpowers the capillary force formed at the tip of the syringe, thus creating the Taylor’s cone from 
the droplet of polymer. The spherical geometry of the droplet, dictated by the surface tension of the 
solvent, becomes conic, forming a jet that is of a micrometric to nanometric order (Guo et al., 2021). 
This happens due to the electrostatic repulsion of ions in the solution that create the highest charge 
density in the apex of the Taylor’s cone. As the jet continues to travel towards the grounded collector 
that closes the circuit, the solvent evaporates, leaving only a mesh of ultrathin fibers formed on the 
collector. During this time, different instabilities start to form, such as the whipping instability 
observed in Figure 1, which takes place because of the Coulomb repulsion. Other instabilities can 
appear as well, such as Rayleigh instability, where the resistance of the surface tension breaks up the 
jet and the asymmetric one, that due to mutual force repulsion and non-uniform charge distribution 
along the jet (Baghchi et al., 2015). This process is very sensitive to changes in parameter values, the 
most important of them all being the polymer concentration, the applied voltage, the type of solvent 
used, the flow rate and other process parameters such as humidity and the distance between the tip 
and the collector. This paper highlights the importance of parameter control and uses MATLAB 
simulations to evaluate the influence of process variations. Mathematical models such as the discrete 
Reneker bead–spring model and the continuous Lagrangian fluid model have been used to describe 
the complex electrohydrodynamic physics behind electrospinning (Rafiei et al., 2013). Additionally, 
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analytical scaling laws proposed by Fridrikh et al. (2003) and Ismail et al. (2017) were applied to 
correlate fiber diameter with the key parameters mentioned.  

 
Figure 1. Illustration of electrospinning method with external permanent magnets, created in BioRender 

 

                                                        𝑑𝑑 =  𝐶𝐶0,5 �𝛾𝛾𝛾𝛾𝑄𝑄
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                                                     (1) 
 

In this study we analyzed how the final fiber diameter changes when fluctuating different values for 
the process parameters. The influence of two different solvents that are commonly used in 
electrospinning (DMF – dimethylformamide and DCM – dichloromethane) were observed and 
compared with water from a point of view of the surface tension. In the first MATLAB programme, 
which was based on Fridrikh’s formula for fiber diameter, the parameters varied were the flow rate, 
the current which was derived from the voltage. Ismail’s more complex formula for fiber diameter 
(Eq. 1) was used for further analysis which also included the electric permitivity of the solution and 
the polymer concentration. The values were chosen to match intervals found in scientific literature, 
as were the other fixed variables. It was observed that the flow rate has the most influence on final 
fiber diameter, being directly proportional to it, as seen in Figure 2. Superficial tension does not 
necessarily influence the result in the beginning, however it can play a role in the Taylor cone 
formation, because of polymer chain entanglement and its resistance to thinning, as well as its 
influence on the evaporation rate. 

 
Figure 2. MATLAB simulations for parameter analysis (Ismail left, Fridrikh right) 

 
Different methods for manipulating the fiber alignment and diameter were proposed for creating 
sensors or artificial muscle fibers or neurons. First, a magnetic field created by placing two permanent 
magnets could influence a parallel allignment of the fibers, as seen in Figure 1. – Secondly, an idea 
arose to change the distance between needle tip and collector during the process, in order to form a 
mesh with different fiber diameters, which could serve as an artificial cell matrix.  

3. CONCLUSION                       
This study focuses on the mathematical modeling that can be used in order to achieve the wanted 
fiber morphology, which is of high importance in many fields, epecially in medicine. The formation 
of such thin fibers is very sensitive to parameter change and mathematical predictions optimizes 
production accuracy of these fibers and their properties. The study demonstrates the implementation 
of the mathematical models and adaptation to different electrospinning setups.                                                                                        
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Abstract: 

Stochastic differential equations have become a particularly useful tool in modeling systems influenced by random 
fluctuations, especially in demography, economics, and finance, where uncertainty also plays a role. This paper presents 
an overview of numerical methods for solving SDEs, emphasizing their stability, convergence, and efficiency. Among the 
classical schemes presented are the Euler-Maruyama and Milstein methods, which are examined alongside the higher-
order stochastic Runge-Kutta approaches. 

The analysis examines the interplay between discretization error and computational cost in the numerical 
approximation of stochastic integrals with respect to Wiener processes. 

Applications are discussed in the context of economic growth models, stochastic interest rate dynamics, and 
volatility modeling, illustrating how numerical simulation provides insights into the propagation of uncertainty and risk 
assessment. 

The study continues with the analysis of the role of the discretization step size, the properties of strong and weak 
convergence, and the use of Monte Carlo techniques for expected value estimation.The results emphasize the importance 
of selecting appropriate numerical schemes for reliable stochastic modeling in modern economic analysis.  

Key words: SDE, numerical methods, stability, Wiener process, estimation parameters 

1. INTRODUCTION 
Stochastic Differential Equations provide a mathematical foundation for modeling dynamic systems 
under uncertainty. In economics, randomness arises naturally from market fluctuations, policy 
shocks, and behavioral variability, making SDE-based models essential for realistic analysis. Because 
most SDEs lack closed-form solutions, numerical methods such as the Euler–Maruyama, Milstein, 
and stochastic Runge–Kutta schemes are used to approximate their trajectories and estimate key 
statistical properties. 
Recent advances combine SDE simulation with Hybrid Statistical Models to enhance the realism and 
security of economic data generation. HSMs integrate probabilistic modeling and computational 
techniques—such as mixture models, Bayesian networks, Gaussian processes, and Sequential Monte 
Carlo methods—to reproduce complex dependencies and temporal structures. In secure economic 
applications, these approaches are reinforced by cryptographic mechanisms, including True Random 
Number Generators, Cryptographically Secure Pseudo-Random Number Generators and machine-
learning-based entropy sources, ensuring both stochastic validity and data integrity. 
This study outlines numerical schemes for solving SDEs and demonstrates how hybrid statistical 
modeling can complement stochastic simulations in economic analysis, supporting uncertainty 
quantification, risk evaluation, and synthetic data generation. 

2. CONTENT 
The stochastic exponential growth model provides a foundational framework for analysing economic 
dynamics under uncertainty. It extends the classical Malthusian growth model by introducing a 
stochastic component that captures random shocks affecting production, population, or capital 
accumulation. The model is formulated as a stochastic differential equation (SDE):  

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑟𝑟𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 
where 𝑋𝑋𝑡𝑡 denotes the economic variable of interest at time 𝑡𝑡, 𝑟𝑟 expressing the deterministic growth 
rate and 𝜎𝜎  measures the intensity of random fluctuations with 𝑊𝑊𝑡𝑡  a Wiener process. 
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The analytical solution is: 𝑋𝑋𝑡𝑡 = 𝑋𝑋0exp ��𝑟𝑟 − 1
2
𝜎𝜎2� 𝑡𝑡 + 𝜎𝜎𝑊𝑊𝑡𝑡�, implying that 𝑋𝑋𝑡𝑡 follows a lognormal 

distribution. This formulation captures both the expected exponential growth and the uncertainty 
associated with random perturbations. 
In economic applications, this model describes phenomena such as: output and capital growth in 
stochastic environments where technological or policy shocks occur, population dynamics under 
migration or fertility uncertainty or asset price evolution, forming the basis of geometric Brownian 
motion used in financial modelling. 
Numerical implementation employs the Euler-Maruyama method, which discretizes the continuous 
process:𝑋𝑋𝑡𝑡+Δ𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝑟𝑟𝑋𝑋𝑡𝑡Δ𝑡𝑡 + 𝜎𝜎𝑋𝑋𝑡𝑡Δ𝑊𝑊𝑡𝑡, where Δ𝑊𝑊𝑡𝑡 ∼ 𝒩𝒩(0,Δ𝑡𝑡). This scheme allows simulation of 
multiple stochastic trajectories, providing insight into expected trends, volatility effects, and the 
probability of extreme economic outcomes. 
Let's consider the stochastic logistic-type growth model: 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑟𝑟𝑋𝑋𝑡𝑡 �1 − 𝑋𝑋𝑡𝑡

𝐾𝐾
� 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡, with 𝑟𝑟 = 

intrinsic growth rate, 𝐾𝐾 = carrying capacity, 𝜎𝜎 = noise intensity, that is a stochastic growth model  
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑎𝑎(𝑋𝑋𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏(𝑋𝑋𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 , where 𝑋𝑋𝑡𝑡  is the state variable that can be population or capital,  
𝑎𝑎(𝑋𝑋𝑡𝑡) = 𝑟𝑟𝑋𝑋𝑡𝑡(1 − 𝑋𝑋𝑡𝑡/𝐾𝐾)  is the drift term and  𝑏𝑏(𝑋𝑋𝑡𝑡) = 𝜎𝜎𝑋𝑋𝑡𝑡  is the diffusion term. 
Applying Milstein's scheme: 𝑋𝑋𝑛𝑛+1 = 𝑋𝑋𝑛𝑛 + 𝑟𝑟𝑋𝑋𝑛𝑛(1 − 𝑋𝑋𝑛𝑛/𝐾𝐾)Δ𝑡𝑡 + 𝜎𝜎𝑋𝑋𝑛𝑛Δ𝑊𝑊𝑛𝑛 + 1

2
𝜎𝜎2𝑋𝑋𝑛𝑛[(Δ𝑊𝑊𝑛𝑛)2 − Δ𝑡𝑡] 

 
 

3. CONCLUSION       
This study focuses on the mathematical modeling 
of SDEs with numerical solutions using Euler-
Maruyama method and Milstein's scheme. The 
applicability of the stochastic exponential growth 
model lies in its ability to integrate deterministic 
economic theory with real-world randomness. It 
supports risk assessment, forecasting, and policy 
evaluation by quantifying how uncertainty 
propagates through economic systems. When 
combined with Hybrid Statistical Models 
(HSMs) for data generation, it also enables 
realistic scenario simulation and enhances 
robustness in empirical economic studies.  
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ABSTRACT 
The paper starts with the goal to analyse models of modern electricity networks as graphs.  We aim to create a 
modular C++ program that, for each node, handles generation or consumption, and, for edges, models real 
transmission lines with values such as resistance and capacity, using well-known algorithms, such as Dijkstra and 
Ford-Fulkerson, to analyse signals, optimise power flow, and identify potential overloads in grids with increasing 
penetration of renewable sources. 
This program gives engineers and students a flexible platform to explore how energy moves through distributed 
networks, and to test scenarios where generation, consumption or network topology change. Users may customise 
inputs - network size, power-output profiles, line characteristics - thus enabling experimentation from small 
microgrids to larger distribution networks and supporting both educational and applied engineering investigations. 
Initial experiments indicate that the combined use of graph-based modelling and signal transformations such as 
Fourier and Laplace is effective in detecting issues like sudden power changes, frequency problems, or line 
overloads. These findings suggest the platform’s potential to enhance resilience and efficiency of electricity networks in 
a renewable-rich environment. 
Keywords: Electrical Grids, Applied Mathematics, C++, Graph Algorithms, Fourier, Laplace, AutoCAD 

1. INTRODUCTION
The purpose of this work is to explore how modern electricity networks can be represented and
analysed using graphs. Each point of energy generation or consumption can be seen as a node, while
the transmission lines that connect them form the edges. By looking at networks this way, we can
better understand how energy flows through a system and what problems might appear when
renewable sources become more common.

2. CONTENT
The project is buit as a modular program in C++ that allows users to model and test different network
configurations. Each edge in the graph has properties such as resistance and capacity, and the program
uses algorithms like Dijkstra and Ford-Fulkerson to simulate energy flow and detect possible
overloads. Users can experiment with different input values — for example, the number of nodes,
power generation profiles, or line parameters — to observe how the system reacts to changes in
structure or demand.
Discrete Fourier Transform (DFT):

𝑋𝑋[𝑘𝑘] =  ∑ 𝑥𝑥[𝑛𝑛] ∗ 𝑒𝑒−𝑗𝑗
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁 ,𝑘𝑘 = 1,𝑁𝑁 − 1����������𝑁𝑁−1

𝑛𝑛=0  (1) 
where a discrete signal x[n] is converted into its frequency components X[k] which helps identify 
oscillations, harmonics, or anomalies in power flow and being implemented numerically using the 
Fast Fourier Transform (FFT) for efficiency. 
Numerical Laplace Transform: 

𝐹𝐹(𝑠𝑠) ≈ ∑ 𝑓𝑓(𝑛𝑛∆𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠∆𝑡𝑡𝑁𝑁−1
𝑛𝑛=0 (2) 

where F(s) is the discrete approximation of the Laplace Transform for sampled signals, which allows 
evaluation of system transient response and network stability and is used to analyze rapid changes in 
power or current. 
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Pseudocode with examples of initial choices: 
The example pseudocode shows the program’s main menu, 
where the user can select different operations. Each choice 
calls a specific function as shown. This structure makes the 
program modular and easy to use for its purpose. 

 
Fig. 1: Visual Representation in AutoCAD 

 of our Electrical Network Example 
 

 
START 
DISPLAY "1: Load Network" 
DISPLAY "2: Run Simulation" 
DISPLAY "3: Detect Overloads" 
DISPLAY "4: Fourier Analysis" 
DISPLAY "5: Laplace Analysis" 
DISPLAY "6: Exit" 
IF choice == 1 
LoadNetworkData() 
ELSE IF choice == 2 
RunPowerFlowSimulation() 
ELSE IF choice == 3 
DetectOverloads() 
ELSE IF choice == 4 
FourierAnalysis() 
ELSE IF choice == 5 
LaplaceAnalysis() 
ELSE EXIT 
END 

3. CONCLUSIONS 
This combination of energetical 
engineering and C++ programming is 
possible. These graph models and signal 
transformations, such as Fourier and 
Laplace, helps detect power variations and 
stability problems in the network. The 
project has potential not only as a learning 
tool for students but also as a base for future 
energetical engineers. It will be further 
developed and we will progress until it 
reaches the point where it could be released 
to the market. 

 

 
Fig. 2: Visual Representation for the Algorithm in C++ 
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Abstract  The robustness of entropy generators is essential for ensuring the security of cryptographic systems, particularly 
within the context of the EU cybersecurity framework (NIS2 Directive and the Cybersecurity Act). A critical component 
of their evaluation lies in the statistical validation of randomness through standardized test suites, such as NIST SP 
800-22. This paper addresses open issues related to the statistical reliability of such tests, with a focus on second-order 
errors (type II errors), test interdependencies, and sample size requirements. We present results on the estimation of 
type II errors for selected tests, namely the frequency monobit test, the frequency test within a block, and the 
runs test. Furthermore, we highlight the mathematical challenges encountered in extending this evaluation to the other 
12 statistical tests included in NIST SP 800-22. Finally, we also propose a method for estimating test 
independence by simulation.

Key words: entropy generator; randomness tests; NIST SP 800-22; statistical evaluation; type II error; test 
independence; cybersecurity certification; EU regulation 

1. INTRODUCTION
According to the NIS2 Directive (EU) 2022/2555 [1] on measures for a high common level 

of cybersecurity across the Union state, all member states should be able to take all necessary 
measures to ensure the protection of the essential interests of national security, to safeguard public 
policy and public security, and to allow for the prevention, investigation, detection, and prosecution 
of criminal offenses. For this purpose, member states ought to possess the ability to grant exemptions 
to private entities engaged in endeavours of national security, public safety, defence, or law 
enforcement, encompassing the prevention, investigation, detection, and prosecution of criminal 
offenses. According to Regulation (EU) 2019/881 [2], a European cybersecurity certification system 
can establish one or more of the following assurance levels for ICT products, ICT services, and ICT 
processes: “basic”, “substantial”, or “high”. The “basic” assurance level signifies a foundational level 
of cybersecurity measures, providing a minimum level of security and risk mitigation, the 
“substantial” assurance level indicates a higher degree of security and resilience, incorporating more 
robust cybersecurity measures and risk management practices, finally the “high” assurance level 
represents the most stringent level of cybersecurity assurance, with comprehensive and advanced 
security measures in place to mitigate risks effectively and ensure the highest level of protection 
against cyber threats. These assurance levels enable stakeholders to make informed decisions when 
selecting ICT products, services, and processes, fostering trust and confidence in the digital 
ecosystem while enhancing cybersecurity across the European Union. For the “substantial” or “high” 
levels, evaluation and certification are carried out by the competent authorities and specialized 
laboratories, respectively. 

A critical element of IT systems and applications is the entropy generator, which must be 
analysed on several levels: statistical characteristics (measured using randomness tests), entropy 
source (based on physical phenomena), entropy evaluation, robustness and security (resistance to 
attacks in the implementation environment, self-testing mechanisms, cryptographic measures to 
eliminate bias), as well as compliance with reference standards. 
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2. CONTENT  

In this paper, we address the issue of statistical characteristics of these devices. One of the 
statistical evaluation standards is the NIST SP 800-22 standard. This standard is a battery of 15 
statistical tests, all statistical tests being performed at a level of error of order 1 (the probability of 
rejecting a true hypothesis) of 1%. A number of open issues regarding statistical tests in this standard 
([4], [5]) are represented by: 

a) the evaluation of the order 2 error (the probability of accepting a false hypothesis) of each 
of the 15 tests; 

b) the interdependence of the 15 statistical tests; 

c) the evaluation of the order 2 error for the entire battery of statistical tests 

d) the minimum sample size for each statistical test necessary to reach a certain threshold of 
the order 1 error; 

The 15 statistical tests follow three main categories of statistical distributions (half normal, 
norm, and χ2 ), as follows: 

Test Distribution 
Frequency (Monobit)  
Random Excursions Variant half normal 
Runs  
Discrete Fourier Transform 
Maurer’s “Universal Statistical” 
Cumulative Sums (Cusum) 

normal 

The Longest Run of Ones in a Block 
Frequency within a Block 
Non-overlapping Template 
Matching  
Overlapping Template Matching 
Linear Complexity A 
Approximate Entropy 

 
 
 

χ2 

Binary Matrix Rank χ2(2) 
Random Excursions  χ2(5) 
Serial  χ2(2m-1)+ χ2(2m-2) 

 
When implementing these statistical testing procedures, it involves a series of issues that are 

not specified in the NIST methodology, such as: the complexity of implementing the tests, the 
minimum sample size to reach a certain level of confidence, the confidence level of the entire 
statistical test suite, the calculation of the probability of accepting a false hypothesis (order 2 error) 
for each statistical test, respectively the entire test battery and last but not least, the independence of 
the tests. 

In our work, we present a series of results obtained regarding the level of 2nd order error for 
the following tests: frequency monobit test, frequency test within a block, runs test, as well as the 
difficulties encountered in performing mathematical calculations for the other 12 statistical tests from 
the NIST SP800-22 package. We also propose a method for estimating test independence by 
simulation using a validated random bit generator Standard certified USB Quantum Random Number 
Generation module [6] and NIST SP 800-22 reference implementation [7]. Another important use 
case where the proposed method could be used is in the process of randomness evaluation of 
cryptographic algorithms. The authors of [8] propose a framework for randomness evaluation of TEA, 
Camellia and LEX cryptographic algorithms using statistical teste such as monobit tests, block 
frequency and run tests. 
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3. CONCLUSIONS  
 

These results contribute to the theoretical foundation of the project MERISD3C-QKD (PN-
IV-P7-7.1-PTE-2024-0735), on transmission-reception modules for integration into quantum key 
distribution (QKD) systems. 
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Abstract 

This article presents some properties of groups and some applications of noncommutative groups. 

Key words: abstract groups, subgroups, order of elements, automorphisms, Lagrange Theorem 

1. INTRODUCTION
In the following we will present without proof some basic results from group theory.

1. Let ( ),G ⋅   be a group ,a b G∈ . If a b b a⋅ = ⋅  then , ,n m m na b b a m n⋅ = ⋅ ∀ ∈ .

2. Let  ( ),G ⋅   be a group, then ( ) { }Z G a G a x x a= ∈ ⋅ = ⋅  is a subgroup of G .

3. Let ( ),G ⋅   be a group and a G∈ , then ( ) { }C a x G a x x a= ∈ ⋅ = ⋅  is a subgroup of  G  and

( )Z G  is a subgroup of  ( )C a .

4. If ( ),G ⋅  is a group and kG p=  where p  is a prime number, then ( ) 1Z G ≠ . 

5. Let ( ),G ⋅  be a group, then ( ) ( )1ord ordx a x a−⋅ ⋅ = .

6. If H  is a subgroup of G  then the relation H G Gρ ⊆ ×  defined by 1
Hx y xy Hρ −⇔ ∈  is an 

equivalence relation on G. 

7. If ( ),G ⋅  is a finite group and H  is a subgroup of G  then
H

GG
Hρ =  and is called the index 

of  H  in G . (Lagrange’s Theorem).
8. A subgroup H  of ( ),G ⋅  is called a normal subgroup if

          1,y G x H yxy H−∀ ∈ ∀ ∈ ⇒ ∈ . 
9. If  ( ),G ⋅  is an abelian group then any subgroup of it is normal

10. If H  is a normal subgroup of ( ),G ⋅  then ( ),G
H ⋅  is a group.

2. CONTENT
1. Let ( ),G ⋅  be a group and  ( ) { }Z G a G a x x a= ∈ ⋅ = ⋅  the center of the group.

a. If G  is a noncommutative group with  n  elements, *n∈ then ( )
4
nZ G ≤ . 

b. Give an example of group with n elements for which ( )
4
nZ G = . 

M. Andronache G.M.10/2012
2. Let ( ),G ⋅  and denote by F  the set of finite order elements of G . If F  is a finite set, prove that

x G∀ ∈  and y F∈  there exists *p∈ such that  p px y y x⋅ = ⋅ .
OJM 2005 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

157



3. Let ( ),G ⋅  be a group with m  elements and a G∈  be an element of order n with property 

{ }2 1, , ,..., na x x a x e a a a −⋅ = ⋅ ⇔ ∈ . Prove that the group G  contains at least 

m
n

 elements of order n . 
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Abstract 

Algebraic identities represent one of the most fundamental and versatile tools in mathematics. From classical 
formulas of decomposition and factorization to complex relationships between polynomials and matrices, they 
provide elegant means for simplifying expressions, proving properties, and uncovering unexpected connections 
between seemingly different concepts. Essentially, an algebraic identity expresses an equality that holds true for all 
values of the involved variables, offering a general framework upon which solid mathematical reasoning can be 
built. 

The use of algebraic identities is not limited to elementary calculations: they play an essential role in number 
theory, where they enable the transformation and analysis of complex arithmetic expressions; in linear algebra, 
where they help deduce properties of matrices, determinants, or vector spaces; as well as in the study of 
inequalities, where they can lead to elegant proofs through inspired factorizations and substitutions. 

.  

Key words: Algebraic identities 

1.INTRODUCTION 

The use of algebraic identities is not limited to elementary calculations: they play an essential 
role in number theory, where they enable the transformation and analysis of complex arithmetic 
expressions; in linear algebra, where they help deduce properties of matrices, determinants, or 
vector spaces; as well as in the study of inequalities, where they can lead to elegant proofs 
through inspired factorizations and substitutions. 

2. CONTENT 

The starting point in this endeavor is the following problem: 

Problem 2.1. Prove that there exists an infinite number of quadruples of natural numbers

( ), , ,x y z t , all pairwise relatively prime, such that 3 3 2 4.x y z t+ + =  

                                                                                                                           Baraj, 2000 

Problem 2.2. If a,b,c are the lengths of the sides of a triangle, then prove that 

                                          1
8

a b b c c a
a b b c c a
− − −

+ + <
+ + +

. 
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Problem 2.3. Show that if the natural number n can be written in the form                                     
2 23 , ,n x y x y= − ∈  , then n can be expressed in this form in infinitely many ways. 

Problem 2.4.  Prove that for any natural number n, the number ( )
12 22 2 1

n n
f n

−
= + + has at least 

n distinct prime divisors. 

Problem 2.5.  Let ( )2019, ,A B C M∈  be a matrix with the property that 

2 2 2A B C AB BC CA+ + = + + .  

Prove that ( )det , , , 0A B B C C A+ + ≤           , where ,X Y XY YX= −   . 

Problem 2.6. Consider two different sets of distinct natural numbers { }1 2, ,..., na a a and 

{ }1 2, ,..., nb b b , such that the sums ( )1
2

n n −
of the form i ja a+  coincide with the sums ( )1

2
n n −

 

of the form i jb b+ . Prove that N is a power of 2. 

3. CONCLUSIONS 

The purpose of this article is to highlight how algebraic identities can be effectively applied in 
these areas, illustrating through concrete examples their unifying power and their ability to reveal 
deep structures hidden behind seemingly diverse mathematical problems. 
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Abstract 

 The goal of this paper is to propose a contribution to the controllability and the minimum energy control problem of 
singular two-dimensional linear systems. The concept of controllability has a variety of applications in advanced 
control theory and systems research, as well as industrial and chemical process control, systems and filters, 2D 

image processing random fields and space-time processing, 2D feedback design techniques. Many researchers have 
studied and developed the problems of minimum energy control of singular two-dimensional systems. In this paper, 

we had interested to a new class of two-dimensional hybrid systems which is the class of singular continuous-discrete 
time models.. 

Key words:  Two dimensional systems, Continuous-discrete systems, Singular systems, Minimum energy, 
Controllability conditions. 

1. INTRODUCTION
Two-dimensional (2D) systems have emerged as an important extension of traditional one-
dimensional models, providing a powerful framework for representing dynamic processes that evolve
along two independent directions, such as space and time. Continuous-discrete systems, a specific
class of 2D models, combine continuous dynamics with discrete updates, offering flexibility in
modeling hybrid processes encountered in engineering and signal processing. Singular systems,
characterized by the presence of algebraic constraints alongside differential or difference equations,
pose additional challenges in analysis and control design. Within this context, achieving minimum
energy control plays a crucial role in optimizing system performance while minimizing control effort.
Furthermore, controllability conditions are fundamental for determining whether a system’s state can
be driven to a desired configuration. The study of these properties in 2D singular continuous-discrete
systems provides valuable insights for both theoretical development and practical applications.

2. CONTENT
The proposed approach is based on the application of the Gramian matrix. It is shown that if the
system is controllable, then there exists an optimum control input that steers the state from the initial
state to the final state. We propose a necessary and sufficient condition of controllability criteria to
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formulate and solve the minimum energy control problem. Some illustrated examples and simulations 
are introduced to illustrate the applicability and accuracy of the proposed method.  
 
Let us consider the singular two-dimensional (2D) continuous-discrete time linear systems defined 
by the following equation: 
 

𝐸𝐸 𝑋𝑋′(𝑡𝑡, 𝑖𝑖)  =  𝐴𝐴 𝑋𝑋(𝑡𝑡, 𝑖𝑖)  +  𝐵𝐵 𝑢𝑢(𝑡𝑡, 𝑖𝑖) 
 
where 𝑋𝑋′(𝑡𝑡, 𝑖𝑖)  =  𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑖𝑖)/𝜕𝜕𝜕𝜕,𝑋𝑋(𝑡𝑡, 𝑖𝑖)  ∈  ℝⁿ, and 𝑢𝑢(𝑡𝑡, 𝑖𝑖)  ∈  ℝᵐ are the state and input vectors, 
respectively. The matrices 𝐴𝐴 ∈  ℝⁿˣⁿ,𝐵𝐵 ∈  ℝⁿˣᵐ (with 𝑛𝑛 ≥  𝑚𝑚) represent the system and input 
matrices. The variable t ∈ ℝ⁺ is the continuous variable (usually representing time), and 𝑖𝑖 ∈  ℤ⁺ =
 {0, 1, 2, … } is the discrete variable.  
 
3. CONCLUSIONS   
 
This study addressed the controllability analysis and minimum energy control of singular two-
dimensional continuous-discrete linear systems. The controllability of such systems was investigated 
using the Gramian matrix approach, which provides a fundamental criterion to determine whether the 
system states can be driven to desired configurations through admissible control inputs. Based on this 
controllability framework, the minimum energy control problem was formulated and solved, ensuring 
that the required state transfer is achieved with the least possible control effort. The obtained results 
highlight the importance of the Gramian matrix in characterizing system behavior and optimizing 
control performance for singular 2D continuous-discrete models. 
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Abstract 

This paper extends the differential‑wrapper hierarchical QPSK concept by incorporating realistic 
atmospheric constraints to better simulate CubeSat communication links through weather‑affected paths. 
The scheme, which encodes two differential QPSK core bits and one wrapper bit via a controlled ±ϕ phase offset, is 
simulated under diverse attenuation and phase noise profiles emulating clear, light rain, and moderate rain 
conditions. Each weather case introduces combined amplitude fading, Doppler prediction error, and phase jitter 
representative of real-world LEO satellite passes. Results demonstrate that while increased attenuation and jitter reduce 
effective SNR, optimized ϕ selections can maintain throughput at moderate Eb/N0 levels. The proposed approach 
improves realism in evaluating differential hierarchical modulations for small satellites. 

Key words: CubeSat communication, doppler prediction, weather constraints, differential QPSK, spectral efficiency 

1. INTRODUCTION
As CubeSat missions mature toward high‑data‑rate applications, robustness to environmental channel
variability becomes increasingly important. Previous work introduced differential‑wrapper
hierarchical QPSK as a constant‑envelope 3‑bits/symbol technique robust to large Doppler shifts
without requiring phase‑locked loops [1]. However, that earlier study assumed mildly impaired
channels. This paper refines the model by adding statistically grounded representations of
weather‑dependent attenuation, amplitude fading, and phase jitter. The new simulations evaluate how
these factors influence throughput and optimal ϕ values across operational signal‑to‑noise ratios.

2. CONTENT
To approximate realistic downlinks, the channel combines several weather dependent elements:

• Mean attenuation in dB representing long term power loss due to rain or cloud cover;
• Log-normal amplitude fading (standard deviation in dB) modeling short-term

scintillation;
• Gaussian phase jitter capturing local turbulence and tropospheric irregularities.

These parameters vary per weather class: clear, light rain, and moderate rain and are applied together 
with the sinusoidal Doppler 
Each transmitted symbol builds on its predecessor as 

𝑥𝑥[𝑘𝑘] = 𝑥𝑥[𝑘𝑘 − 1]𝑒𝑒𝑗𝑗(𝛥𝛥core+𝑠𝑠𝑘𝑘 𝜙𝜙), (1)
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where Δcore ∈ {±𝜋𝜋/4, ±3𝜋𝜋/4} encodes two Gray-mapped core bits, and the wrapper bit modifies the 
step by ±ϕ. The receiver derotates by the predicted cumulative Doppler phase and extracts the phase 
difference between successive samples. Decision logic selects the closest among eight candidate 
increments. 
Monte Carlo simulations sweep ϕ from 0°–40° and Eb/N0 from 0–18 dB across multiple weather cases 
[2]. For each combination, bit error rates for core and wrapper bits are computed, and throughput is 
defined as 

𝑇𝑇 = 2(1 − BERcore) + �1 − BERwrap�. (2) 
 

The analysis further identifies best ϕ values maximizing throughput both per Eb/N0 and on average. 
Throughput curves and mean throughput versus ϕ plots are generated for clear, light rain, and 
moderate rain, showing the modulation’s adaptability to environmental degradation. 
Simulation results confirm that under mild to moderate weather attenuation, throughput degradation 
remains limited if ϕ is optimized. Light rain conditions cause minor SNR loss (<1 dB) compared to 
clear weather, while moderate rain induces higher phase jitter and amplitude fading, reducing mean 
throughput by ≈10% at low Eb/N0. However, differential detection maintains stability without  
requiring carrier recovery. The dependence of best ϕ on environmental severity suggests the potential 
for adaptive ϕ control in future CubeSat systems. 

 
3. CONCLUSIONS  
 
Incorporating atmospheric impairment modelling into differential wrapper hierarchical QPSK 
provides a more accurate picture of its practical performance for CubeSat links. 
The results emphasize that the proposed scheme not only enhances spectral efficiency but also 
demonstrates robustness under realistic conditions. Future research will extend this model to 
hardware in the loop tests and investigate adaptive ϕ selection strategies guided by real time channel 
estimation. 
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Figure 1. Best ϕ for Mean Throughput for clear weather, light rain and moderate rain 
for Eb/N0 = 8 db. 
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Abstract: This paper investigates the role of early diagnostic of thyroid nodules and proposes a minimum machine 

learning–assisted model, more specifically a mathematical tool that can be further develop into a more efficient one on 

a microcontroller, for example a Raspberry Pi 5. One of the big problem that was encountered during the building of 

the model was the fact that although it seems to be a simple model to be build, GPU (Graphical Processing Units) 

were required and the dataset was also another key aspect to take into consideration, due to the fact that a dataset that 

has lacunas can present a big problem for our final results. This paper also was started from a course that Iulian-

Nicolae has studied this summer related to how Python programming language can help start a tiny Machine 

Learning script from scratch.  

Key words: thyroid nodule, Machine Learning, tumour, malign, benign. 

1. INTRODUCTION

The accurate evaluation of thyroid nodules remains a clinical challenge due to their high prevalence 

and variable risk of malignancy. While the majority of nodules are benign, the correct identification 

of suspicious features is essential for guiding biopsy recommendations and treatment strategies for 

patients even when the cancer is in an incipient status. Starting from this observation, the present 

study attempts to present a small mathematical tool for analysing a dataset from the internet with 

photos taken from patients that has malign, or benign thyroid cancer, with the ultimate goal 

of identifying a framework that can be reliably implemented in clinical practice. We hope that 

through this study we can be able, in the end to increase the efficiency of detecting the true positive 

cases and to have a low as possible rate of detecting false negative cases. 

2. CONTENT

First of all, we used the dataset ‘TN5000: An Ultrasound Image Dataset for Thyroid Nodule Detection 

and Classification’1 published on 16 August 2025 which presents images that were taken 

from different patients that presents thyroid cancer identified and certified by doctors. We 

choose for implementation the software Google Colab which offers standardized NVIDIA T4 GPU. 

We imported all the images and the labels attached to each of the image and we used the bounding 

boxes that were provided for each image to identify where the tumour is exactly situated. These 

pieces of information were stored in ‘.xml’ format and each image provided using the standard 

‘.jpg’. After that, a very important step was dealing with the size of the images because there were 

5000 images with different sizes and we chose to resize all the images at the most common size, 

being 718x500 pixels in order not to lose information for most of the images. We can assume 

that although 1026 images will be resized, we will have a big number of them that are at their 

original size. Finally, for the pre-processing data we cropped those images using that bounding box 

that was defined previously taking into account that we are interested in just the way a tumour look 

like both for malign and for 

1 The dataset is available on https://www.nature.com/articles/s41597-025-05757-4 (hyperlink accessed on 15.10.2025) 
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benign and also we split our data for the training, validation and testing phases that are part of the 

mathematical model that we have used during the testing of the algorithm. 

The method utilised is mainly used nowadays for image classification with ResNet18. First, the 

images are stored as 3D tensors (by means of storing the height, width and finally the channels for 

colours). We must mention from the very beginning that we applied to all the images a filter to assign 

to each image just one colour in order to avoid filling the memory with unnecessary elements. We 

have applied convolution, normalisation and matrix multiplication on these tensors, by using the 

generalised formulae: 

 

𝑦 = 𝑊𝑥 + 𝑏 

 

where ‘W’ is a weight matrix, ‘x’ is the input tensor and ‘b’ is a bias vector. 

For the ResNet18, which is a CNN with residuals connections, in the algorithm there were defined 

some kernels or filters that were applied over the images to extract features that will be necessarily 

for identifying a new image and classified it. 

We can define a convolution kernel in the following: 

 

(𝑓 ∗ 𝑥)𝑖,𝑗 = ∑ ∑ 𝑓(𝑚, 𝑛) ∙ 𝑥(𝑖 + 𝑚, 𝑗 + 𝑛)

𝑛𝑚

 

 

And the residuals blocks: 

𝑦 = 𝐹(𝑥) + 𝑥, 

 

where ‘F(x)’ is a transformation (usually it is a convolution, or a normalisation). In the end of the 

training, we would be interested in just a binary classification (e.g. benign or malign). We also defined 

and calculated using the algorithm the multiclass cross entropy loss since we previously said that we 

are just interested in a binary classification of the cancer and this model is suitable for our application: 

 

𝑀𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 =   −
1

𝑁
∑ ∑(𝑦𝑖,𝑗 ∙ log (𝑝𝑖,𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 

Where ‘N’ is the number of samples, ‘C’ is the number of classes, 𝑦𝑖,𝑗 is 1 if class ‘j’ is correct for a 

random sample ‘i’ and 0 in the rest. Finally, 𝑝𝑖,𝑗 is model-predicted probability of the same sample 

‘i’ being in class j. The two final steps involved are the calculation of model outputs logits that are 

passed thought ‘softmax’ and the maximum probability.  

We have chosen a number of 20 epochs to train the model, and we have obtained a test loss varying 

between 0.53 (at the first epoch) and reaching 0.42 (at the final epoch) and an accuracy of 84.40% 

for detecting a tumour and classify it being either benign or malign. 

 
 

3. CONCLUSIONS  
 

This study presented in short, a lightweight machine learning model for the classification of thyroid 

nodules. By applying preprocessing steps such as resizing, cropping and bounding-box selection, 

followed by the actual training with ResNet18, the model achieved an accuracy of 84.40% in 

distinguishing between benign and malignant cases. Although this study is at a very beginning stage 

it highlights both the potential (e.g. a compact mathematical model) but also the limitation (e.g. the 

dependence of GPU resources), but in the future we want to transfer this solution on a limited 

microcontroller to test its capabilities and observe the evolution of the accuracy.  

 

(1) 

(2) 

(3) 

(4) 
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Abstract 

This paper highlights the mathematical tools that were used to bring relevant additions to the field of control 
engineering, where dynamic models are described using nonlinear differential equations. In many practical 
situations, such mathematical models are partially or completely unknown; this work focuses on a class of dynamic 
systems described by nonlinear differential equations that are affine with respect to the input signal. Given that these 
nonlinear functions exist, their behavior can be sufficiently well approximated using a neural network with a single 
hidden layer with enough number of neurons. Within this context, this work extends the available working solutions by 
effectively handling the case of non-smooth reference tracking, under certain key assumptions. Moreover, this result 
comes with theoretical guarantees and proofs along with a case study in which theoretical aspects are numerically 
validated. 

Key words: nonlinear differential equations; universal approximation; convex optimization; Lyapunov stability. 

1. INTRODUCTION
Control engineering is a field that blends multiple mathematical concepts such as differential
geometry, complex analysis, convex optimization, differential equations and linear algebra, concepts
that were directly needed to formulate the results proposed by this work. Given the mathematical
context, this paper focuses on extending the classic feedback linearization technique that has highly
important results in control engineering, by handling its main drawback, namely that it requires a
precise mathematical model of a dynamic system, which is unlikely in practice. To handle such
practical scenarios neural networks are used as universal function approximators to learn unmodeled
dynamics. The objective is to design a closed loop control system that can maintain good tracking
performance for a given reference trajectory. In addition to current results, the solution proposed by
this work allows the use of a non-smooth reference trajectory.

2. CONTENT
This work consists in some introductory content to familiarize the reader to control theory concepts
highlining the mathematic tools need to understand the analysis and synthesis conducted to establish
the main result of the paper. Background on the classic feedback linearization approach is also
presented and acts as a conceptual basis for defining the control problem, followed by the proposed
solution that is supported by theoretical guarantees and formal proofs along with numeric validation.

2.1 PROBLEM FORMULATION 
Considering a class of single-input-single-output (SISO) nonlinear dynamical systems described by 
the following set of first order nonlinear differential equations: 

∑𝑛𝑛 : �
𝜂̇𝜂(𝑡𝑡) = 𝑓𝑓0(𝜂𝜂, 𝜉𝜉)

𝜉̇𝜉(𝑡𝑡) = 𝐴𝐴𝑛𝑛𝜉𝜉(𝑡𝑡) + 𝐵𝐵𝑛𝑛�𝛼𝛼(𝑥𝑥) + 𝛽𝛽(𝑥𝑥)𝑢𝑢(𝑡𝑡)�
𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑛𝑛𝜉𝜉(𝑡𝑡)

where 𝑥𝑥 = Φ(𝜉𝜉, 𝜂𝜂) ∈  ℝ𝑛𝑛 denotes the original states of the system, for which Φ is a diffeomorphism 
with 𝑛𝑛 being the order of the system, 𝜉𝜉:ℝ+ → ℝ𝑟𝑟 is the linearizable part of the system, 𝜂𝜂:ℝ+ → ℝ𝑛𝑛−𝑟𝑟 
the internal dynamics with 𝑓𝑓0 a nonlinear mapping,  𝑢𝑢:ℝ+ → ℝ describes the input function, followed 
by the measured output 𝑦𝑦:ℝ+ → ℝ along with 𝐴𝐴𝑛𝑛 ∈ ℝ𝑟𝑟×𝑟𝑟 being the state matric, 𝐵𝐵𝑛𝑛 ∈ ℝ𝑟𝑟 the input 
matrix and 𝐶𝐶𝑛𝑛𝑇𝑇 ∈ ℝ𝑟𝑟 the output matrix. The system is said to have a relative degree 𝑟𝑟 that represents 
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the number of times the output 𝑦𝑦(𝑡𝑡) needs to be differentiated until the input 𝑢𝑢(𝑡𝑡) appears explicitly. 
Considering a feedback interconnection: 

𝑢𝑢∗(𝑡𝑡)  =  
1

𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓𝑟𝑟−1ℎ(𝑥𝑥) �−𝐿𝐿𝑓𝑓
𝑟𝑟ℎ(𝑥𝑥) + 𝑣𝑣(𝑡𝑡)� 

where  𝐿𝐿𝑓𝑓 ℎ(𝑥𝑥) is the directional (Lie) derivative of ℎ along 𝑓𝑓 that admits the recursive definition 
𝐿𝐿𝑓𝑓𝑚𝑚ℎ(𝑥𝑥) =  𝐿𝐿𝑓𝑓 𝐿𝐿𝑓𝑓𝑚𝑚−1ℎ(𝑥𝑥) for any 𝑚𝑚 ∈ ℤ+, and 𝑣𝑣:ℝ+ → ℝ is a function that describes a reference 
trajectory. Considering the following assumptions: 

1) The new states 𝜉𝜉(𝑡𝑡) are obtained through a unity transformation. 
2) The sign of 𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓𝑟𝑟−1ℎ(𝑥𝑥) is considered known and constant throughout its domain. 

The goal is to design a closed loop control system that can maintain tracking performance for a non-
smooth reference trajectory, while ensuring asymptotic stability of the equilibrium. Towards this end, 
based in the Universal Approximation Theorem, the ideal control signal 𝑢𝑢∗(𝑡𝑡) is approximated by a 
neural network with a single hidden layer: 

𝑢𝑢�(𝑡𝑡) = 𝑊𝑊�𝜎𝜎(𝑉𝑉�𝑥𝑥𝑁𝑁𝑁𝑁) 
where  𝑊𝑊� , 𝑉𝑉�  are the weights of the neural network that must be numerically found by solving a 
convex optimization problem, 𝜎𝜎 is a discriminatory (activation) function and finally 𝑥𝑥𝑁𝑁𝑁𝑁 the input of 
the neural network. In order to correctly formulate the optimization problem, an objective function 
must be properly chosen and the main contribution of this paper consists in how such a function is 
constructed. The main idea is to quantify the difference between the actual states and the state of an 
ideal liner system ∥ 𝜉𝜉(𝑡𝑡) − 𝑧𝑧(𝑡𝑡) ∥2, where ∥∙∥ is the Euclidian norm and 𝑧𝑧(𝑡𝑡) are the ideal states of 
the ideally linearized system. Using this objective function allows the use of non-smooth reference 
trajectories. 
 
2.2 THEOREM (STABILITY OF THE CLOSED LOOP SYSTEM): 
Considering the described class of nonlinear dynamic systems that may eighter have complete or 
partial relative degree, under the mentioned assumptions, the approximation of the input function 
using a neural network with a single hidden layer, under convergence conditions, ensures asymptotic 
stability of the closed loop system for any reference. The result is established based on the universal 
approximation theorem of neural networks and Lyapunov stability theory. The proof consists in 
showing that the derivative of a Lyapunov function is negative definite, which directly translates to a 
dissipative behavior of the system, thus ensuring asimptotic stability. 

𝑉𝑉 =
1
2
∗ 𝑒𝑒𝑇𝑇𝑃𝑃𝑒𝑒 + 𝑊𝑊� ∙ 𝑊𝑊� 𝑇𝑇 

where 𝑃𝑃 = 𝑃𝑃𝑇𝑇 is a symmetric and positive definite matrix that satisfies 𝐴𝐴𝑐𝑐𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴𝑐𝑐 = −𝑄𝑄, with 𝑄𝑄 
being a positive definite matric and 𝐴𝐴𝑐𝑐 a matrix with all its eigen values having negative real parts. 
The presented theorem formally ilustrates the main result of this work that extends current literature 
by providing a working solution that does not require full relative degree and alows the use of non-
smooth functions that describe the reference trajectory for the closed loop system. The theoretical 
aspects were validated againts a case study on banchmarking systems for both complete and partial 
relative degree cases. 
 
3. CONCLUSIONS 
 
This work manages to underline the mathematical concepts used to provide a working solution of 
intelligent feedback linearization, that adds value to the current available approaches. To make the 
method more widely available, a relevant possible research direction would be searching for ways in 
which the assumption that the system must already be in the normal form, can be relaxed. Other 
relevant improvement would be represented by augmenting the neural networks in order to be able t0 
learn non-smooth function, making the solution be feasible to a wider range of applications. 
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Abstract  

 

The continuous advancement of medical imaging technologies such as MRI, CT, PET, and ultrasound has led to an 

unprecedented increase in the amount and resolution of clinical data. Interpreting these complex images requires 

analytical frameworks capable of describing irregular, heterogeneous, and self-similar structures. Traditional Euclidean 

geometry, based on regular forms and smooth contours, has reached its limits in modeling the complexity of natural and 

biological structures. To overcome these limitations, this study explores the mathematical and computational applications 

of fractal geometry for early tumor detection and visualization from medical imaging data. Fractal geometry, introduced 

by Benoît Mandelbrot in The Fractal Geometry of Nature (1982), provides the mathematical tools needed to describe 

objects that are self-similar across multiple scales. These structures, which appear disordered or fragmented from an 

Euclidean perspective, can exhibit a high degree of internal organization when analyzed using fractal principles. The 

concept of self-similarity relies on the principle of contraction mappings in metric spaces: a transformation that reduces 

distances between points by a fixed factor less than one. According to Banach’s Fixed-Point Theorem, every contraction 

mapping in a complete metric space admits a unique fixed point. This theoretical result is fundamental to the generation 

of fractals and to the iterative decomposition of complex geometries encountered in biological tissues. Another important 

mathematical tool used in this research is the Hausdorff distance, which measures the geometric difference between two 

compact sets. It provides a quantitative basis for evaluating the similarity between two shapes or regions, such as 

comparing a segmented tumor boundary with a healthy tissue region. 

 
Key words: Fractal Geometry, Fractal Dimension, Box-Counting Method, Hausdorff Distance, Metric Contraction, 

Fixed-Point Theorem, Medical Image Analysis, Tumor Detection, Early Diagnosis, Mathematical Modeling  

 

 

1. INTRODUCTION 

Euclidean geometry, based on lines, planes, and regular shapes, has long been the main tool for 

describing natural objects and phenomena. However, it reached a performance limit when it came to 

characterizing atypical, complex, and irregular shapes—such as cloud edges, rib structures, blood 

vessels, or tumor contours. Euclidean models, built on symmetry and regularity, cannot capture the 

degree of fragmentation and discontinuity that defines real structures in nature and biology. 

 

To overcome these limitations, Benoît Mandelbrot introduced the concept of fractal geometry in his 

seminal work “The Fractal Geometry of Nature” (1982). This new mathematical paradigm proposes 

an alternative view of space and form, based on self-similarity, hierarchical complexity, and scale 

invariance. According to it, a fractal object exhibits a repetitive structure at different scales of 

observation, each level preserving the global characteristics of the ensemble. Thus, apparently chaotic 

phenomena can be described by coherent mathematical models, which manage to capture the hidden 

internal organization of natural complexity. 

 

In the field of medical imaging, this approach has proven to be extremely relevant. Biological tissues, 

especially pathological ones, often exhibit a high degree of structural irregularity and spatial 

heterogeneity. Tumors, for example, do not have regular contours and exhibit growth patterns that 

repeat at different scales — a typical fractal behavior. For this reason, fractal analysis provides a 

powerful mathematical tool for quantifying complexity and identifying subtle differences between 

healthy and diseased tissues. 
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2. BANACH CONTRACTION PRINCIPLE 

Let (𝑋, 𝑑) be a metric space. Then a map 𝑇: 𝑋 → 𝑋 is called a contraction mapping on 𝑋, if there 

exist 𝑘 ∈ [0, 1) such that: 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 

The number 𝑘 will be called contraction factor. 

Let (𝑋, 𝑑) be a complete metric space with a contraction mapping 𝑇: 𝑋 → 𝑋 with contraction factor 

𝑘. Then 𝑇 admits a unique fixed point 𝜉 so that 𝑇(𝜉) = 𝜉. The point 𝜉 will be called the fixed point 

of 𝑇. 

 

3. SELF-SIMILARITY 

This is one of the fundamental properties of fractal structures and describes the ability of an object to 

repeat its shape or structure at different scales of observation. In other words, a self-similar system 

contains substructures that reproduce, in whole or in part, the shape of the initial ensemble. This 

characteristic reflects a type of internal order in the apparent chaos of nature and allows the 

mathematical modeling of complex shapes that cannot be described by traditional Euclidean 

geometry.  

In the context of medical imaging, self-similarity is manifested by the structural repeatability of 

biological tissues at the macro, micro and subcellular levels. For example, vascular networks, 

neuronal arborizations or tumor edges present similar hierarchical patterns at various scales, which 

justifies the use of fractal analysis in their characterization. By quantifying the degree of self-

similarity, subtle variations in tissue architecture can be identified, relevant for the early diagnosis of 

tumor formations and for the differentiation between normal and pathological tissues. 

 

4. FRACTAL DIMENSION 

Fractal dimension is an extension of the concept of Euclidean dimension, providing a quantitative 

tool for describing the geometric complexity of an object. In classical geometry, the dimension of a 

point is 0, of a line is 1, of a plane is 2, and of a volume is 3. However, many natural forms – such as 

the edges of clouds, the contours of ribs, vascular networks, or the edges of tumors – cannot be strictly 

confined to one of these integer dimensions. They partially occupy space, lying between two 

successive Euclidean dimensions, which requires the introduction of a fractional dimension. 

Thus, the fractal dimension 𝐷 quantifies how an object fills space depending on the scale of 

observation. In the case of self-similar objects, it can be defined by the general relation: 

𝑁(𝑟) = 𝑘 ∙ 𝑟−𝐷 

where 𝑁(𝑟) represents the number of similar parts needed to describe the object at a scale 𝑟, 𝑘 is a 

proportionality constant, and 𝐷 is the fractal dimension. 

By applying the logarithm to both sides of the relationship, the practical calculation expression is 

obtained: 

𝐷 = −
𝑙𝑜𝑔𝑁(𝑟)

𝑙𝑜𝑔 𝑟
 ⇔ 𝐷 =

𝑙𝑜𝑔𝑁(𝑟)

𝑙𝑜𝑔 (1/𝑟)
 

In other words, the size of an object is: 

𝐷 =
𝑙𝑜𝑔(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑓 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑐𝑜𝑝𝑖𝑒𝑠)

𝑙𝑜𝑔 (𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟)
 

 

5. BOX-COUNTING METHOD 

The Box-Counting method is one of the most widely used and efficient techniques for estimating the 

fractal dimension of digital objects. Its major advantage lies in its simplicity, robustness, and universal 
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applicability — it can be implemented directly on two-dimensional (2D) or three-dimensional (3D) 

images, without requiring explicit analytical formulas of the studied object. 

 

The basic principle of the method consists in covering the object (or the region of interest in an image) 

with a grid of squares (in 2D) or cubes (in 3D), each having a dimension 𝑟. It is then counted how 

many of these coverage units contain at least part of the object. As the dimension 𝑟 decreases, an 

increasing number of occupied units are obtained, and the relationship between them provides an 

estimate of the spatial complexity of the object.  

𝐷 = 𝑙𝑖𝑚
𝑟

  
→  0

𝑙𝑜𝑔 𝑁(𝑟)

𝑙𝑜𝑔( 1/𝑟)
 

6. BOX-COUNTING ALGORITHM 

Step 1. Structure coverage 

    The analyzed structure is placed in a grid of squares of equal side, denoted by 𝑟. Then the number 

of squares containing at least part of the object (pixels belonging to the structure) is counted. This 

number is denoted by 𝑁(𝑟). 

Step 2. Progressive change of scale 

   The size of the square 𝑟 changes progressively, decreasing at each step (for example, by half). 

For each value of 𝑟, the corresponding 𝑁(𝑟) is determined. This results in a series of pairs (𝑟𝑖, 𝑁(𝑟𝑖)), 
with 𝑖 = 0, 1, 2, . . 𝑘 

Step 3. Graph representation 

    The diagram (graph) is constructed in logarithmic coordinates, in which it is represented: 

𝑙𝑜𝑔 𝑁(𝑟) = 𝑓(𝑙𝑜𝑔( 1/𝑟)) 
If the object has a fractal structure, the experimental points align approximately on a straight line. 

The slope of this straight line is determined by linear regression and represents the Box-Counting 

dimension. 

 

 

7. FRACTALS IN MEDICINE 

Throughout history, the structures and functions of the human body have been studied through various 

empirical and experimental techniques, designed to confirm the proper functioning of the body or to identify 

the presence of certain diseases. Currently, with the development of information technology and computerized 

imaging, these analysis processes have transformed into a complex field, based on the digital processing of 

medical images (MRI, CT, PET, ultrasound). 

The anatomical components and biological systems of the body can be described by mathematical models that 

capture their internal organization, the degree of complexity and the evolution over time. In this context, fractal 

analysis provides a unified framework for the mathematical modeling of irregular biological forms and 

processes, such as blood vessels, neuronal arborizations or tumor cell proliferations. 

The fractal properties of these structures — self-similarity, controlled irregularity and hierarchical complexity 

— can be quantified through the fractal dimension, which reflects the level of spatial organization of tissues. 

Thus, fractal analysis allows not only the static characterization of an anatomical formation, but also the 

realization of predictions regarding the evolution of the disease based on the observed changes in the fractal 

dimension over time. 

By applying fractal algorithms to medical images, maps of tissue complexity can be constructed, useful for: 

• identifying areas with pathological potential, 

 

• differentiating between healthy and affected tissues, 

 

• monitoring the evolution of a tumor under treatment, 

 

• estimating the degree of malignancy or invasiveness. 
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In particular, methods based on the Box-Counting algorithm have proven extremely effective in the analysis 

of tumor contours, vascular networks and cellular textures. They can transform complex visual information 

from medical images into a precise numerical representation, which can be subsequently integrated into 

machine learning models for computer-assisted diagnosis. 

 

8. FRACTAL DIMENSION MAP 

It is a method for spatial visualization and analysis of the complexity of a medical image. The concept 

derives directly from the local calculation of the fractal dimension, extended to the pixel or voxel 

level, to obtain a two-dimensional or three-dimensional distribution of fractal values over the entire 

analyzed region. 

Unlike the global estimate of the fractal dimension – which provides a single value for the entire 

structure, the fractal dimension map allows highlighting local variations in complexity. This becomes 

a valuable tool in the analysis of biological tissues, as it allows the identification of areas with 

abnormal behavior from a structural point of view, even before the changes are visible at the 

macroscopic level. 

For a digital medical image 𝐼(𝑥, 𝑦), the process of constructing the fractal dimension map is carried 

out in several steps: 

1. Image segmentation 

The region of interest corresponding to the analyzed tissue  is extracted. Segmentation can 

be manual, semi-automatic or automatic, depending on the type of data. 

2. Calculating the local fractal dimension 

For each pixel (𝑥, 𝑦)in the region of interest, a local window 𝑊(𝑥, 𝑦) of fixed size is 

defined.  

The Box-Counting method is applied to this window to estimate the local fractal dimension.  

3. Fractal map construction 

A matrix 𝐷(𝑥, 𝑦) is formed containing the local fractal values for each position in the image. 

This can be visualized as a color map, where the shades encode the level of complexity. 

4. Statistical analysis and clinical interpretation 

Global and local descriptors, such as mean, standard deviation, fractal entropy or spatial 

distribution of 𝐷(𝑥, 𝑦)values, can be extracted from the fractal map. These parameters can 

be used for automatic tissue classification or for monitoring tumor progression. 

9. CONCLUSIONS 

The study presented herein demonstrates the strong connection between mathematical theory and medical 

imaging, highlighting how fractal geometry can serve as a powerful framework for modeling, quantifying, and 

interpreting the complex structures of biological tissues. Classical Euclidean geometry, limited to regular and 

smooth shapes, is inadequate for describing the irregular and self-similar morphologies found in nature and, 

in particular, within pathological tissues such as tumors. 

By introducing the principles of self-similarity, metric contraction, and fixed-point theory, fractal geometry 

provides a rigorous mathematical foundation for analyzing natural complexity. The fractal dimension, as a 

quantitative descriptor of irregularity, enables the transformation of visual structural information into 

measurable data. Using the Box-Counting algorithm, this dimension can be efficiently estimated from digital 

medical images, revealing underlying morphological differences between healthy and tumorous regions. 

Furthermore, the development of Fractal Dimension Maps (FDMs) allows for a local assessment of spatial 

complexity, producing detailed visualizations that highlight structural heterogeneity within tissues. These 

maps not only facilitate the early detection of pathological changes but also enable longitudinal monitoring of 

disease progression or therapeutic response. In clinical applications, higher fractal dimension values have been 

correlated with increased tissue disorganization, a hallmark of malignancy, thus offering an additional, 

objective biomarker for diagnostic systems. 
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Abstract 

Annually, approximately 400 million cubic meters of wood are extracted from European forests (see Fig. 1), 

of which 30 million are from illegal actions. The objective of this paper is to find a solution for the rapid 

identification and localization of the position of a potentially dangerous object, using the Discrete Fourier 

Transform algorithm with time decimation, which plays a role in the frequency decomposition of sound, but 

also in geographic triangulation in order to locate the sound source in the forest with the best possible 

accuracy and precision. The work is developed from the point of view of both efficiency and redundancy. 

The complexity of the implementation was decisive in choosing the algorithm, and from an energy point of 

view, the device has a backup for extreme situations in which weather conditions in the area may affect the 

functionality in the optimal parameters. In addition, the device can also be used to monitor flora and fauna. 

Keywords: 

Discrete Fourier transform, triangulation, energy efficiency, solar panel, optimization, redundancy, 

discretization, bandpass filter, Newton-Raphson algorithm, Kalman filter; 

Fig 1. Forest map of Europe (~40% of Europe’ s surface is forested) 
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Introduction 

This paper aims to find a solution for the "cry for help" of forests, by modeling a device that can 

detect and locate potential outbreaks of illegal logging. In addition, with this device we can monitor flora 

and fauna in the forest, or other hard-to-reach areas. 

Problem analyzed and objectives 

Sinusoidal signals are the only ones that propagate undistorted through linear systems. But, in a 

case from everyday life, we are not faced with ideal cases, but continuous and periodic signals are not 

sinusoidal. In this case, the Fourier series expansion is applied, which decomposes the signal into a sum of 

sinusoidal signals, which have the following properties: they can be amplified, attenuated, phase-shifted. 

Thus, any continuous and periodic signal, of period 𝑇, for example 𝐴 𝑠𝑖𝑛(𝜔𝑡 + 𝜑), where 𝜔 =
2𝜋

𝑇
 is the

frequency, can be expanded in Fourier series: 

𝑓(𝑡) = 𝐴0 +∑𝐴𝑛 𝑠𝑖𝑛(𝑛𝜔𝑡 + 𝜑𝑛)

∞

𝑛=1

where 𝐴0 is the continuous component, 𝐴𝑛 is the amplitude of the sinusoid of order 𝑛, 𝜑𝑛 is the initial phase

of the sinusoid of order 𝑛. Following the development of terms according to the formula 𝑠𝑖𝑛(𝑎 + 𝑏), results: 

𝑓(𝑡) = 𝑎0 +∑𝑎𝑛 𝑐𝑜𝑠(𝑛𝜔𝑡)  + 𝑏𝑛 𝑠𝑖𝑛(𝑛𝜔𝑡)

∞

𝑛=1

where 𝑎0 =
1

2𝜋
∫ 𝑓(𝑡) 𝑑𝑡
𝜋

−𝜋
 , 𝑎𝑛 =

1

𝜋
∫ 𝑓(𝑡)𝑐𝑜𝑠(𝑛𝑡) 𝑑𝑡
𝜋

−𝜋
 and 𝑏𝑛 =

1

𝜋
∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑛𝑡) 𝑑𝑡
𝜋

−𝜋
 are called Euler-

Fourier formulas. 

The signal 𝑓(𝑡) is composed of several harmonics that have a frequency that is an integer multiple 

of the fundamental frequency. Fundamental frequency is 𝜔0 =
1

𝑇0
, and the frequency of the 𝑘-order sinusoid

is 𝜔𝑘 = 𝑘 ∙ 𝜔0, so the signal can be decomposed:

 𝑓(𝑡) = 𝐴0 + 𝐴1𝑠𝑖𝑛 (𝜔0𝑡 + 𝜑1)  + 𝐴2𝑠𝑖𝑛 (2𝜔0𝑡 + 𝜑2)  + ⋯ + 𝐴𝑛𝑠𝑖𝑛 (𝑛𝜔0𝑡 + 𝜑𝑛)

          Fundamental harmonic  2nd  harmonic            Harmonic of order n 

My solution 

The device has a compact shape, which can be easily placed on the crown of trees. Being an 

autonomous device, connections with the control center are made via radio waves, via the 

telecommunications network, since the central board has a SIM card. As shown in figure 2, during 

transmitter → receiver we will use both the Fourier transform to move to the frequency domain, and the 

Fourier inversion formula to return to the time domain, at the moment of receiving the signal. 
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Denoting by ℒ1(ℝ) the set of functions 𝑓:ℝ → ℝ for which ∫ |𝑓(𝑡)| 𝑑𝑡
∞

− ∞
<∞, Fourier transform 

of the function 𝑓 ∈ ℒ1(ℝ) is a function ℱ[𝑓]:ℝ → ℂ, where:

ℱ[𝑓(𝑡)](𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

Let 𝑓:ℝ → ℝ and 𝑓 ∈ ℒ1(ℝ) and noting with ℱ[𝑓(𝑡)](𝜔) the Fourier transform of 𝑓 and

assuming that ∫ |ℱ[𝑓(𝑡)](𝜔)| 𝑑𝜔
∞

− ∞
<∞, the Fourier inversion formula results: 

𝑓(𝑡) =
1

2𝜋
∫ ℱ[𝑓(𝑡)](𝜔)𝑒𝑖𝜔𝑡
∞

−∞

𝑑𝜔;  𝑓𝑜𝑟 ∀ 𝑡 ∈ ℝ 

      Fig 2. Using the Fourier transform and inversion formula on the transmitter-receiver path 

Audio signal processing methods 

Any signal is made up of sinusoids, and the set of these is the signal spectrum. The latter is 

determined using the Fourier series expansion for periodic signals (waveform of sin(x) in Fig. 3) and the 

Fourier Transform for non-periodic ones (waveform of sa(x) in Fig. 3). Signals are determined by their 

representation in the time domain, as a waveform, but also in the frequency domain, as a spectrum. The 

result is fundamental in signal and systems theory, because it is a method of representing analog signals, by 

knowing only a discrete number of its values, like Fig. 4. 

In the context of detecting and locating potentially dangerous sounds in the forest environment, one 

of the essential steps in signal processing is its filtering to eliminate unwanted components and highlight 

relevant features. An effective filter used in such applications is the band-pass filter (see Fig. 5), which 

allows frequencies from a specific range to pass and attenuates the rest of the spectrum. In the case of forests, 

where the environment is rich in background sounds, the band-pass filter contributes significantly to 

improving the signal-to-noise ratio. 

Fig 5. Bandpass filter block diagram 

Fig 4. T-step sampled signalFig 3. Waveforms of the sa(x) and sin(x) signals for 

comparision 
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Discrete Fourier Transform 

The signals captured by the device are non-periodic, being the composition of several signals. (see 

Fig. 6) Therefore, for the spectral analysis of the signal, the Fourier transform will be used, which allows us 

to move from the time domain to the frequency domain. This process will need to be implemented on the 

computer, so we must use a method that is as efficient as possible (which consumes as few computer 

resources as possible). Therefore, for the above calculation, we will write 𝑥[𝑛] the finite signal to which we 

will apply the discrete Fourier transform, and 𝑋[𝑛] is the sample of the spectrum 𝑥[𝑛] at frequency 𝑘, it 

results (see Fig. 7):  

𝑋[𝑛] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

⋅ 𝑒−𝑖
2𝜋𝑛𝑘
𝑁 ;  𝑛 = 0,𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

The formula can also be written in matrix form 𝑊 ∙ 𝑥 = 𝑋, in this way: 

(

1 1 1 ⋯ ⋯ 1
1 𝜔 𝜔2 ⋯ ⋯ 𝜔𝑁−1

1 𝜔2 𝜔4 ⋯ ⋯ 𝜔2(𝑁−1)

⋮ ⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔𝑁−1 𝜔2(𝑁−1) ⋯ ⋯ 𝜔(𝑁−1)2)

∙

(

𝑥[0]

𝑥[1]

𝑥[2]
⋮
⋮

 𝑥[𝑁 − 1] )

=

(

𝑋[0]

𝑋[1]

𝑋[2]
⋮
⋮

 𝑋[𝑁 − 1] )

where 𝜔 = 𝑒−𝑖
2𝜋
𝑁 , so |𝜔|  = 1 and 𝜔̅ =

1

𝜔
. From here, results 𝑊 ⋅ 𝑊̅ = 𝑊̅ ∙ 𝑊 =

1

𝑁
⋅ 𝐼𝑁, where 𝐼𝑁 is the identity

matrix of order N, and 𝑊̅ is the matrix with the conjugate elements of 𝑊. Then, 𝑊 is an invertible matrix 

with 𝑊−1 =
1

𝑁
⋅ 𝑊̅. 

Fast Fourier Transform (FFT) Algorithm 

When we talk about the Fast Fourier Transform algorithm, we distinguish two implementation 

modes: time decimation and frequency decimation. This process involves reducing the sampling rate of a 

digital signal (see Fig. 8). 

Fig 7. Fourier transform of a signal x[n] 
Fig 6. Decomposition of a time-domain sinusoid into 

multiple frequency-domain sinusoids 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

177



Fig 8. Difference between execution time of the FFT algorithm compared to the DFT algorithm if the number of 

samples increases 

In the first case (see Fig. 10), to achieve time decimation, the first half of the spectrum and the second half 

of the spectrum are calculated separately. For each spectral sample, the calculations are performed on the 

signal represented in time decimated in two, thus separating the even and odd elements: 

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
𝑘𝑛

𝑁−1

𝑛=0

, 𝑘 = 0,
𝑁

2
− 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑋(𝑘) = ∑ 𝑥(2𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
𝑘2𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(2𝑛 + 1) ∙ 𝑒−𝑖
2𝜋
𝑁
𝑘(2𝑛+1)

𝑁
2
−1

𝑛=0

By grouping the coefficients, we can see that the equation simplifies to a Fourier transform operation on a 

half-sequence: 

𝑋(𝑘) = ∑ 𝑥(2𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(2𝑛 + 1) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛 ∙ 𝑒−𝑖

2𝜋
𝑁
𝑘

𝑁
2
−1

𝑛=0

𝑋(𝑘) = ∑ 𝑥(2𝑛) ∙ 𝑒
−𝑖
2𝜋
𝑁
2

𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(2𝑛 + 1) ∙ 𝑒
−𝑖
2𝜋
𝑁
2

𝑘𝑛

∙ 𝑒−𝑖
2𝜋
𝑁
𝑘

𝑁
2
−1

𝑛=0

𝑋𝑒𝑣𝑒𝑛(𝑘) 𝑋𝑜𝑑𝑑(𝑘)

I noted with 𝑋𝑒𝑣𝑒𝑛(𝑘) discrete Fourier transform of the even components of the sequence 𝑥(𝑛), and with

𝑋𝑜𝑑𝑑(𝑘) on the one corresponding to the odd components. Therefore, to determine the first half of the

Fourier transform of the signal x, it is necessary to calculate the transforms of the even and odd samples 

separately and to sum them. 

𝑋(𝑘) = 𝑋𝑒𝑣𝑒𝑛(𝑘) + 𝑋𝑜𝑑𝑑(𝑘) ∙ 𝑒
−𝑖
2𝜋
𝑁
𝑘 , 𝑘 = 0,

𝑁

2
− 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
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Now, we will apply the same decimation for the upper half of the spectrum, but modifying the range of k 

to have a formula compatible with the calculated half: 

𝑋(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
𝑘𝑛

𝑁−1

𝑛=0

, 𝑘 = 0,
𝑁

2
− 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑋(𝑘 +
𝑁

2
) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖

2𝜋
𝑁
(𝑘+

𝑁
2
)𝑛

𝑁−1

𝑛=0

, 𝑘 = 0,
𝑁

2
− 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Then, we rearrange the coefficients similarly to the first part: 

𝑋 (𝑘 +
𝑁

2
) = ∑ 𝑥(2𝑛) ∙ 𝑒

−𝑖
2𝜋
𝑁
(𝑘+

𝑁
2
)2𝑛

𝑁
2
−1

𝑛=0

+∑ 𝑥(2𝑛 + 1) ∙ 𝑒
−𝑖
2𝜋
𝑁
(𝑘+

𝑁
2
)(2𝑛+1)

𝑁
2
−1

𝑛=0

= ∑ 𝑥(2𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛 ∙ 𝑒−𝑖

2𝜋
𝑁
∙
𝑁
2
2𝑛

𝑁
2
−1

𝑛=0

+∑ 𝑥(2𝑛 + 1) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛 ∙

𝑁
2
−1

𝑛=0

𝑒−𝑖
2𝜋
𝑁
∙
𝑁
2
2𝑛 ∙ 𝑒−𝑖

2𝜋
𝑁
𝑘𝑒−𝑖

2𝜋
𝑁
∙
𝑁
2  

= ∑ 𝑥(2𝑛) ∙ 𝑒−𝑖2𝜋𝑛

𝑁
2
−1

𝑛=0

+∑ 𝑥(2𝑛 + 1) ∙ 𝑒
−𝑖
2𝜋
𝑁
2

𝑘𝑛

∙

𝑁
2
−1

𝑛=0

𝑒−𝑖2𝜋𝑛 ∙ 𝑒−𝑖
2𝜋
𝑁
𝑘 ∙ 𝑒−𝑖𝜋

          1       1 −1

𝑋 (𝑘 +
𝑁

2
) = ∑ 𝑥(2𝑛) ∙ 𝑒

−𝑖
2𝜋
𝑁
2

𝑘𝑛

𝑁
2
−1

𝑛=0

− ∑ 𝑥(2𝑛 + 1) ∙ 𝑒
−𝑖
2𝜋
𝑁
2

𝑘𝑛

∙ 𝑒−𝑖
2𝜋
𝑁
𝑘

𝑁
2
−1

𝑛=0

𝑋𝑒𝑣𝑒𝑛(𝑘) 𝑋𝑜𝑑𝑑(𝑘)

Thus, the discrete Fourier transform of a signal can be rewritten by the following formula, where 𝜔𝑁
𝑘  are 

the N-th order roots of unity: 

{
𝑋(𝑘) = 𝑋𝑒𝑣𝑒𝑛(𝑘)  + 𝜔𝑁

𝑘 ∙ 𝑋𝑜𝑑𝑑(𝑘)

𝑋 (𝑘 +
𝑁

2
) = 𝑋𝑒𝑣𝑒𝑛(𝑘)  − 𝜔𝑁

𝑘 ∙ 𝑋𝑜𝑑𝑑(𝑘)
 ;   𝑘 = 0,

𝑁

2
− 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

179



This formula can be represented graphically as "butterfly wings":

Fig 9. ,,Butterfly” graph in case of time decimation 

Fig 10. Calculation graph of FFT with time decimation for 8 samples 

In the second case, to reduce the execution time of the Discrete Fourier Transform, decimation is 

performed in the transformed domain. Thus, we will develop the even and odd terms separately. 

{

𝑋(2𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁−1

𝑛=0

𝑋(2𝑘 + 1) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
(2𝑘+1)𝑛

𝑁−1

𝑛=0

 ;   𝑘 = 0,
𝑁

2
− 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

Next, we proceed similarly to the decimation in time, only this time we expand the equations into 

lower halves and upper halves. For the even terms we will have: 
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𝑋(2𝑘) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁−1

𝑛=
𝑁
2

= ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛 +
𝑁

2
) ∙ 𝑒−𝑖

2𝜋
𝑁
2𝑘(𝑛+

𝑁
2
)

𝑁
2
−1

𝑛=0

= ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛 +
𝑁

2
) ∙ 𝑒−𝑖

2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘
𝑁
2  

= ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛 +
𝑁

2
) ∙ 𝑒−𝑖

2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

∙ 𝑒−𝑖2𝜋𝑘

= ∑ 𝑥(𝑛) ∙ 𝑒
−𝑖
2𝜋
𝑁
2

𝑘𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛 +
𝑁

2
) ∙ 𝑒

−𝑖
2𝜋
𝑁
2

𝑘𝑛

𝑁
2
−1

𝑛=0

𝑋𝑖𝑛𝑓(𝑘) 𝑋𝑠𝑢𝑝(𝑘)

It can be seen that, practically, the even terms of a Fourier transform can be calculated as the 

simple sum of the Fourier transform of the first half of the vector with the Fourier transform of the second 

half of the vector. 

𝑋(2𝑘 + 1) = ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
(2𝑘+1)𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
(2𝑘+1)𝑛

𝑁−1

𝑛=
𝑁
2

= ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
(2𝑘+1)𝑛

𝑁
2
−1

𝑛=0

+ ∑ 𝑥(𝑛 +
𝑁

2
) ∙ 𝑒−𝑖

2𝜋
𝑁
(2𝑘+1)(𝑛+

𝑁
2
)

𝑁
2
−1

𝑛=0

= ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

∙ 𝑒−𝑖
2𝜋
𝑁
𝑛 + ∑ 𝑥(𝑛 +

𝑁

2
) ∙ 𝑒−𝑖

2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘
𝑁
2 ∙ 𝑒−𝑖

2𝜋
𝑁
𝑛 ∙ 𝑒−𝑖

2𝜋
𝑁
∙
𝑁
2  

= ∑ 𝑥(𝑛) ∙ 𝑒−𝑖
2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

∙ 𝑒−𝑖
2𝜋
𝑁
𝑛 + ∑ 𝑥(𝑛 +

𝑁

2
) ∙ 𝑒−𝑖

2𝜋
𝑁
2𝑘𝑛

𝑁
2
−1

𝑛=0

∙ 𝑒−𝑖2𝜋𝑘 ∙ 𝑒−𝑖
2𝜋
𝑁
𝑛 ∙ 𝑒−𝑖𝜋

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

181



= ∑ 𝑥(𝑛) ∙ 𝑒
−𝑖
2𝜋
𝑁
2

𝑘𝑛

∙ 𝑒−𝑖
2𝜋
𝑁
𝑛

𝑁
2
−1

𝑛=0

− ∑ 𝑥(𝑛 +
𝑁

2
) ∙ 𝑒

−𝑖
2𝜋
𝑁
2

𝑘𝑛

∙ 𝑒−𝑖
2𝜋
𝑁
𝑛

𝑁
2
−1

𝑛=0

𝑋𝑖𝑛𝑓(𝑘) 𝑋𝑠𝑢𝑝(𝑘)

Thus, the discrete Fourier transform of a signal can be rewritten by the following formula, where 𝜔𝑁
𝑘  are 

the N-th order roots of unity: 

{
𝑋(2𝑘) = 𝑋𝑖𝑛𝑓(𝑘)  + 𝑋𝑠𝑢𝑝(𝑘)

 𝑋(2𝑘 + 1) = 𝑋𝑖𝑛𝑓(𝑘) ∙ 𝜔𝑁
𝑘  −  𝑋𝑠𝑢𝑝(𝑘) ∙ 𝜔𝑁

𝑘

In order to apply this formula we must multiply by the coefficients 𝜔𝑁
𝑘  during the calculation of the half-

sequences and not after these calculations have been made. This means that we will have to approach an 

iterative calculation, starting from sequences consisting of a single element and at each step moving to a 

sequence of double length. This iterative approach can be followed on the following butterfly (see Fig. 11). 

Fig 11. Calculation graph of FFT with frequency decimation for 8 samples 

Localization concepts and methods 

In general, for locating a stationary sound source, the Time Difference of Arrival (TDOA) method 

tends to be the most efficient and stable method in most practical applications. 

If we consider three-dimensional space, the 3 sensors 𝑆1, 𝑆2 și 𝑆3 with the coordinates (𝑥1, 𝑦1, 𝑧1),

(𝑥2, 𝑦2, 𝑧2), respectively (𝑥3, 𝑦3, 𝑧3) and the unknown position of the sound source 𝑃 given by (𝑥𝑝, 𝑦𝑝, 𝑧𝑝),

we can measure arrival time differences (see Fig. 12): 
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{
 𝛥𝑡21 = 𝑡2 − 𝑡1;  𝑜𝑓 𝑆2 relative to 𝑆1 
 𝛥𝑡31 = 𝑡3 − 𝑡1;  of 𝑆3 relative to 𝑆1

Let 𝑐 the speed of sound propagation in air (considered constant), then the corresponding distance 

differences are 𝑐 ∙ 𝛥𝑡21 = 𝑑2 − 𝑑1 and 𝑐 ∙ 𝛥𝑡31 = 𝑑3 − 𝑑1, where 𝑑𝑖 is the distance between the sound

source 𝑃 (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) and the sensor 𝑆𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖):

{

𝑑1 = √(𝑥𝑝 − 𝑥1)
2 + (𝑦𝑝 − 𝑦1)

2 + (𝑧𝑝 − 𝑧1)
2

 𝑑2 = √(𝑥𝑝 − 𝑥2)
2 + (𝑦𝑝 − 𝑦2)

2 + (𝑧𝑝 − 𝑧2)
2

𝑑3 = √(𝑥𝑝 − 𝑥3)
2 + (𝑦𝑝 − 𝑦3)

2 + (𝑧𝑝 − 𝑧3)
2

After substituting the expressions for 𝑑𝑖 in the distance difference equations, we obtain a system of two

nonlinear equations with three unknowns 𝑥𝑝, 𝑦𝑝, 𝑧𝑝:

{

√(𝑥𝑝 − 𝑥2)
2 + (𝑦𝑝 − 𝑦2)

2 + (𝑧𝑝 − 𝑧2)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 =  𝑐 ∙ 𝛥𝑡21

√(𝑥𝑝 − 𝑥3)
2 + (𝑦𝑝 − 𝑦3)

2 + (𝑧𝑝 − 𝑧3)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 =  𝑐 ∙ 𝛥𝑡31

This system generally has an infinite number of solutions, which in this case form a curve in three-

dimensional space, being the intersection of two hyperboloids. However, to obtain a unique solution, a third 

equation, independent of the two, would be needed. 

To address this issue, we will introduce a fourth sensor 𝑆4 (𝑥4, 𝑦4, 𝑧4), with which we will measure a third

time difference 𝛥𝑡41 = 𝑡4 − 𝑡1, which leads us to 𝑐 ∙ 𝛥𝑡41 = 𝑑4 − 𝑑1 and the appearance of the third

equation. By doing so, the system of three nonlinear equations with three unknowns 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 is:

{

 

√(𝑥𝑝 − 𝑥2)
2 + (𝑦𝑝 − 𝑦2)

2 + (𝑧𝑝 − 𝑧2)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 =  𝑐 ∙ 𝛥𝑡21

√(𝑥𝑝 − 𝑥3)
2 + (𝑦𝑝 − 𝑦3)

2 + (𝑧𝑝 − 𝑧3)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 =  𝑐 ∙ 𝛥𝑡31

√(𝑥𝑝 − 𝑥4)
2 + (𝑦𝑝 − 𝑦4)

2 + (𝑧𝑝 − 𝑧4)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 =  𝑐 ∙ 𝛥𝑡41

The analytical solution of this system is complex and we will use numerical optimization methods, such as 

the Newton-Raphson method, to find an approximation of the solution of the system (𝑥𝑝, 𝑦𝑝, 𝑧𝑝). The system

can be written in the form: 𝐹(𝑋) = 0, where 𝑋 = [

𝑥𝑝
𝑦𝑝
𝑧𝑝
] is the vector of unknowns, and 𝐹(𝑋) = [

𝑓1(𝑥, 𝑦, 𝑧)
𝑓2(𝑥, 𝑦, 𝑧)
𝑓3(𝑥, 𝑦, 𝑧)

],

where: 
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{

 

𝑓1(𝑥, 𝑦, 𝑧) = √(𝑥𝑝 − 𝑥2)
2 + (𝑦𝑝 − 𝑦2)

2 + (𝑧𝑝 − 𝑧2)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 −  𝑐 ∙ 𝛥𝑡21

𝑓2(𝑥, 𝑦, 𝑧) = √(𝑥𝑝 − 𝑥3)
2 + (𝑦𝑝 − 𝑦3)

2 + (𝑧𝑝 − 𝑧3)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 −  𝑐 ∙ 𝛥𝑡31

𝑓3(𝑥, 𝑦, 𝑧) = √(𝑥𝑝 − 𝑥4)
2 + (𝑦𝑝 − 𝑦4)

2 + (𝑧𝑝 − 𝑧4)
2 −√(𝑥𝑝 − 𝑥1)

2 + (𝑦𝑝 − 𝑦1)
2 + (𝑧𝑝 − 𝑧1)

2 −  𝑐 ∙ 𝛥𝑡41

Next, we will calculate the Jacobian defined as 𝐽(𝑋) =

[
 

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦

𝜕𝑓1

𝜕𝑧

𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦

𝜕𝑓2

𝜕𝑧

𝜕𝑓3

𝜕𝑥

𝜕𝑓3

𝜕𝑦

𝜕𝑓3

𝜕𝑧 ]
 

. 

Next, we will apply the iterative algorithm for solving systems of nonlinear Newton-Raphson 

equations: 𝑋𝑘+1 = 𝑋𝑘 − [𝐽(𝑋𝑘)]
−1 ∙ 𝐹(𝑋𝑘), where 𝑋𝑘 is the estimate of the solution at iteration k, 𝑋𝑘+1 is

the estimate of the solution at iteration k+1, [𝐽(𝑋𝑘)]
−1is the inverse of the Jacobian matrix evaluated in 𝑋𝑘,

and 𝐹(𝑋𝑘) is the function evaluated in 𝑋𝑘. To begin with, it is necessary to choose an initial approximation

𝑋0. A good choice of the initial estimate can help the algorithm converge quickly, thus improving

computational efficiency. Since in the present situation we cannot indicate an ideal initial approximation, 

we will use the centroid of the sensor locations, 𝑥0 =
𝑥1+𝑥2+𝑥3+𝑥4

4
, 𝑦0 =

𝑦1+𝑦2+𝑦3+𝑦4

4
, 𝑧0 =

𝑧1+𝑧2+𝑧3+𝑧4

4
. 

We will iterate through a loop: the calculation of 𝐹(𝑋𝑘), Jacobian calculation 𝐽(𝑋𝑘) followed by a check if

it is invertible. Otherwise, we will choose another initial approximation. If it is invertible, we will calculate 

the inverse [𝐽(𝑋𝑘)]
−1 and we will update the solution estimate according to the formula 𝑋𝑘+1 = 𝑋𝑘 −

[𝐽(𝑋𝑘)]
−1 ∙ 𝐹(𝑋𝑘). A stop condition will be set ∥ 𝑋𝑘+1 − 𝑋𝑘 ∥ < 𝜀.

Fig 12. Localization method of the P (source of the sound) using 4 devices (S1, S2, S3, S4) 
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Design of the device 

The device consists of two main components: the 

sound signal processing unit and the power source (see 

Fig.13). From an energetic point of view, the device is 

powered by solar panels that capture sunlight and store it 

in batteries, which are subsequently consumed by the 

system. On the other hand, the accumulators are designed 

for a high charge-discharge rate, and a full charge cycle 

is exhausted in about a week. The positioning at the top 

of the trees plays a special role, maximizing the rate of 

solar energy capture. The sound processing unit is sealed in a capsule, being protected from the 

weather and adverse weather conditions. 

Improvements and future ideas 

This paper aims to bring about a 

change in society, through its way of 

combating and minimizing illegal 

deforestation. In this sense, the system (see 

Fig. 14) is guided by the motto Lifelong 

learning, through which it wants to improve 

itself over time, keeping up with new 

technologies. Therefore, an album will be 

created with as many fingerprints of 

dangerous sounds as possible, in order to 

have a larger database, which allows the 

device to better identify dangerous sound 

sources. 

Conclusion 

This paper presented the design and implementation of a system for detecting and locating 

dangerous sounds in the forest environment, based on a network of devices that record and process sounds 

to classify them using the Fast Fourier Transform Algorithm, in illegal logging activities. For localization, 

an algorithm will be implemented that will detect the sound source based on the difference in time of arrival 

of the sound at at least four microphones, since a localization in three-dimensional space is desired. In order 

to find the geographical coordinates with the smallest possible error, the iterative Newton-Raphson 

algorithm for solving systems of nonlinear equations will be used, which, after a few iterations, will provide 

us with the position of the sound source with a moderate error. 

Summarizing, we can conclude that the proposed system can reduce illegal logging activities by 

using computer resources effectively. During the research, several algorithms were presented in parallel, 

explaining their advantages, disadvantages, complexity and execution time of the calculations, the latter 

Fig 13. Design of the device: power source and

sound signal processing unit

Fig 14. Organigram of the project and the software 

applications (MATLAB, Python3 and Docker) 
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being the decisive factor in the choice made. The project is also being developed to reduce measurement 

errors and to achieve identification with greater accuracy in the future. 
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Abstract 

This study addresses the solvability of two-dimensional (2D) dynamical models by introducing advanced tools based on 
fractional calculus and integral transforms. In particular, we investigate the application of newly defined fractional 
derivatives together with extended transform techniques tailored for a specific class of 2D systems. The proposed 
approach leverages both the two-dimensional Sumudu and Laplace transforms to obtain analytical solutions of 

continuous Fornasini–Marchesini models within the framework of conformable derivatives. Beyond solving the models, 
the work also establishes a novel formulation of the 2D Sumudu transform and explores its fundamental properties, 

thereby extending its applicability to multidimensional systems analysis. To illustrate the effectiveness and accuracy of 
the proposed methodology, a representative example is provided, highlighting not only the theoretical precision but 

also the practical feasibility of the developed techniques in handling complex 2D models. 

Key words:  Two dimensional systems, Continuous  systems Fractional Calculus, Conformable derivative, Fornasini-
Marchesini Models 

1. INTRODUCTION
Two dimensional (2D) models appear and play a key role in several areas, more particularly in

engineering, control theory and also in digital and image processing, fluid dynamics, mechanics and 
physics. Note that 2D models propagate the information in two independent directions and they have 
received considerable reaserch attention. 
Fractional calculus can be defined as the generalization of a classical calculus of integration and 
differentiation not necessarily integer. It was a matter of almost exclusive interest for few 
mathematicians and theoretical physicist in several applications and domains. Many efforts have been 
done to develop fractional dynamical systems in finite and infinite dimensions, originated with the 
fundamental papers and monographs. However, considerable attention has, recently, been paid to the 
two dimensional fractional systems by the development of a mathematical framework to generalize 
a number of research works. 

In recent years there has been a growing interest to develop this class of models where the considered 
derivatives is called a conformable fractional derivatives.  Many efforts have been done to develop some 
properties of the considered derivatives and are presented in by Khalil and Abdeljawed in 2014 and 2015. 

For this purpose, the main aim of this study is to propose a new method to solve the problem of the 
solvability for the $2D$ Fornasini- Marchesini models. The partial fractional order derivatives of a 2D 
continuous functions based on the conformable derivative is given. 

The 2D conformable Laplace transform and some properties are used  to solve the class of the first form 
of Fornasini-Marchesini models.  
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Indeed, in the beginning, throught some properties and new definitions of the  2D conformable Sumudu 
transform, three theorems and lemma are proposed with proofs. 

2. CONTENT
Let us consider the continuous 2D Fornasini-Marchesini fractional (α,β) -order model described by
the state-space equations  :

Tt1,t2
α ,β x(t1, t2)

= A0x(t1, t2) + A1Tt1
αx(t1, t2) + A2Tt2

β x(t1, t2)  + Bu(t1, t2)

where  $𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) ∈ 𝑅𝑅𝑛𝑛$ is the state vector, $𝑢𝑢(𝑡𝑡1, 𝑡𝑡2) ∈ 𝑅𝑅𝑚𝑚$ is the input vector and 𝐴𝐴𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛, 𝑖𝑖 =
0.1.2,𝐵𝐵 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚  , the boundary conditions x(0, 𝑡𝑡2) and 𝑥𝑥(𝑡𝑡1, 0) are given. 

3. CONCLUSIONS

In this work, we investigated the interesting problem of the computation of the solution of the 
continuous Fornasini-Marchesini type model in its first and second forms containing partial 
fractional-order derivatives described by the conformable derivative. First, The solution has been 
derived using 2D Laplace transform and in the second part, the conformable double Sumudu 
transform has been defined with some properties to solve the considered class of model.  It must be 
emphasized that the presented methods are exhaustive study of the calculation of the solutions of a 
2D fractional class. An illustrative example has been given to show the accuracy and the applicability 
of the proposed approach. 
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Abstract

We introduce the JN relaxed algorithm to solve the Cauchy problem for convection-diffusion equations in a bounded
domain. The algorithm iteratively updates mixed boundary conditions using a relaxation parameter to improve
convergence. We establish theoretical convergence criteria and show that optimal parameter choices accelerate the
algorithm compared to standard methods like the KMF algorithm. This approach offers a robust solution for
applications in fluid dynamics and heat transfer.

Key words: Inverse Cauchy Problem; convection-diffusion equation; JN relaxed algorithm; convergence analysis;
KMF algorithm; iterative methods.
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Abstract: In this work, we study the dynamics of a mathematical model describing the spread of 
Xylella fastidiosa disease in an olive orchard. We begin by introducing an age-structured model 
composed of two equations: an ordinary differential equation (ODE) describing the evolution 
of healthy olive trees, and a partial differential equation (PDE) modeling infected olive trees 

according to their age of infection. Referring to the work of P. Magal ([1]), this system is reduced 
to a delay differential equations model, where a delay term appears on the infected olive trees 
variable. We show that this model is well-posed and establish the existence of two equilibrium 
points: the disease-free equilibrium and the endemic equilibrium. An analysis of local stability 

is carried out, and for the disease-free equilibrium, a global stability analysis is performed using 
a Lyapunov-Krasovskii functional, using the basic reproduction number R0 depending on the 
delay τ . This number depends also in particular on the implantation rate Λ as well as on the 
mortality rates of healthy, infected and uprooted olive trees. Finally, numerical simulations 

illustrate the theoretical results obtained, followed by a conclusion. 

Key words: Xylella Fastidiosa, Hybrid mathematical model, Partial differential equation, Ordinary 
differential equation, Steady states, Local and global stability, Numerical simulations. 

1. INTRODUCTION 
Xylella Fastidiosa is a Gram-negative bacterium that can cause diseases in a wide range of 

plants, including grapevines, citrus, and olive trees. This bacterium is considered a major threat to 
forestry and agricultural industries worldwide, as it can cause significant economic losses 
by damaging crops and trees. The transmission of Xylella Fastidiosa is caused by the insects 
such as sharpshooters and spittlebugs. Once inside the plant, the bacterium colonizes the xylem 
vessels, which are responsible for transporting water and nutrients throughout the plant.  We are 
interested by the study of a  hybrid mathematical model that describes the dynamic of the 
Xylella Fastidiosa disease. We consider, at first  that the disease is transmitted  from olive tree to 
an other one 

2. CONTENT 
We consider a population of olive trees, otherwise in good health, of size N(t) at time t. 

The main variables in our description are: 
S(t) : the size of sensitive olive trees at the time t.  
i (t,a): the size of infected olive trees over time t and age a. 
The initial conditions of sensitive and infected olive trees are given by S_{0} and i_{0}(a) 
respectively. 
The variable a denote the age of the disease (age of infection), i.e. the time that has elapsed since the 
infected olive trees became infected. 
After introducing a structured age model, we proceed to reduce it to a delay model. 
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3. CONCLUSIONS 

In conclusion, our study began with the formulation of a model to describe the spread of 
Xylella Fastidiosa disease, a biological phenomenon crucial to understand. It models the evolution of 
susceptible and infected olive trees. 
After that, we perform our study by reducing it  to a delayed model, which captures the essential 
epidemic mechanisms  
In addition, we studied the conditions for the existence of equilibrium points, their local stability, and 
also the global stability of the disease-free equilibrium. 
Finally, using numerical simulations, we illustrated different cases and scenarios. 
This work could make a significant contribution to the mathematical modeling of the spread of 
Xylella Fastidiosa, opening up new perspectives for the research, prevention, and control of this 
biological threat. 
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Abstract 

Here, in the broad context of quantum communications, we present the design and the fabrication aspects of a 
Quantum Key Distribution (QKD) system based on the protocol BB84 with decoys. The goal is to realize a system 
comprising the Tx - Alice and Rx – Bob modules based on low cost and of the shelf optical fiber components such that 
the hardware is robust, secure, easy to implement and maintain ready to be deployed in free space optical 
communication for both terrestrial and space scenarios. We will present the design of the system as well as various 
characterization techniques for the components. 

Key words: Quantum Key Distribution; BB84; Fiber Optics; Fiber Optics Components; Free Space Optical 
Communications   

1. INTRODUCTION
The accelerated development of quantum computing both theoretically and experimentally [1] 

leads to the possibility of realizing in the future a scalable quantum computer with a sufficiently 
large number of qubits that has the capability to successfully implement the Shor algorithm for 
factoring large numbers into prime factors in polynomial time [2,3]. This automatically 
leads to the vulnerability of the asymmetric cryptosystems currently used to transmit 
information through the existing telecommunications infrastructure, in which their secure 
nature is given by their mathematical complexity. A solution to maintain the secure nature of 
the transmitted information is to use symmetric, disposable encryption keys – one pad key – 
distributed using the existing telecommunications networks, keys that from a theoretical and 
practical point of view prove to be invulnerable to quantum attacks. In this case, the secrecy of 
information is ensured by the principles of quantum mechanics, the superposition principle, the 
entanglement property, respectively the impossibility of copying or cloning a quantum state - no 
cloning theorem. 
2. CONTENT

The first quantum key distribution (QKD) protocol between two parties, the transmitter - Alice 
and the receiver - Bob was proposed by Bennet and Brassard in 1984 [4] and experimentally 
implemented in 1992 [5]. This protocol is based on “prepare and measure” method in the sense that 
Alice prepares single photons in two polarization bases right and diagonal transmit them over a 
quantum channel to Bob which measure their polarization state of the detected. By exchanging 
information about the single photon bases over a standard classical communication channel they are 
able to share a cryptographic one pad key. 
Currently, there are a multitude of QKD protocols that use either the BB84 “prepare and measure” 
method described above, BB84 with decoy states [6-8] or SARG 04 [9]. Protocols such as E91[10] 
or BBM92 [11] have also been proposed that use the entanglement property of photons generated by 
the interaction of a pump beam with a nonlinear optical element. 
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This work will present an overview of the aforementioned QKD protocols and sysstems from 
both the theoretical and experimental point of view. We will discuss the implementation of QKD in 
various terrestrial and space scenarios at national and international level as well as several use cases 
in industry, academia, etc.  

Finally, we will describe the approach taken by BlueSpace technology and IMT Bucharest for 
design and fabrication of the hardware components of a QKD system based on the protocol BB84 
with decoys in the framework of the technology transfer project MERISD3C-QKD.  Here we will 
consider a system based on fiber optics components and we will present the design aspects, the 
components characterization methods such as polarization control of the single photons, entropy 
generation, preparation of the single photons, their detection as well as the synchronization methods 
between Alice and Bob. In the end we will present the security issues associated with this type of 
QKD system.   
3. CONCLUSIONS
The design and the fabrication aspects of the transceiver modules for a quantum cryptographic system
employing the BB84 with decoys protocol were presented and analysed. The focus was put on
utilization of the low cost, of the shelf optical fiber components aiming the robustness of the hardware,
its low cost and the ease of implementation in QKD complete systems for free space optical
communications.
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Abstract

Rumors have become a serious issue in today’s modern era, particularly in view of increased activity
in social and online platforms. False information can go viral almost instantaneously through social
networks that immediately affect society and people’s minds. The form of rumor it develops within,
whether fabricated intentionally or not, impacts public perspectives through manipulation of emotion
and cognition. We propose and analyze a mathematical model describing how rumors can spread through
an online social media (OSM) platform. Our model focuses on two coexisting rumors (two strains), The
results provide some conditions under which rumors die out or become persistent, and they show the
influence of delays, skepticism levels, and incidence rates on the dynamics of information spread.

1 Introduction
Rumors have always been a fundamental aspect of human communication for centuries, having a deep im-
pact on perception, public opinion, and frequently playing an important role in social and political life.
However, with improvements in digital technology and social media platforms, the speed at which rumors
spread has reached unprecedented levels. The explosion of social networks has changed the way information
is shared, making it possible for real and false information to reach large groups of people. This development
raises serious concerns about the accuracy of online content and the potential dangers of misinformation.
Rumors can come from a variety of sources, including false information, unverified press releases, and indi-
viduals seeking attention.
While not all of them cause immediate harm, many have the potential to cause panic, distort public percep-
tion, and destroy one’s reputation. There is a critical necessity to investigate how rumors spread in order to
develop effective strategies for fighting disinformation and creating an informed society.
Rumor spreading in social networks and communities has long been a subject of interest in both sociology
and mathematics. Understanding how information, whether true or false, spreads within a population can
help to devise some strategies to control misinformation and improve communication channels. Mathemati-
cal models have proved to be an important tool in describing and predicting rumor dynamics.
Based on this work, researchers have introduced more complex models by including various realistic factors.
Time delays, for example, represent the time a person takes to change states, such as from hearing a rumor
to spreading or becoming skeptical.
In this work, we extend the current models by considering several types of rumors that are spreading at the
same time, each with its own skepticism and recovery rates. We introduce an eight-variable delay differen-
tial system representing different states of individuals and analyze the stability of its equilibria for various
conditions of parameters. Our goal is to understand the propagation of multistrain rumors and the variables
that affect stability.

∗Corresponding authors: laurance.fakih@upb.ro, andrei.halanay@upb.ro
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Two rumors spreading in an OSM
In this model, we assume there are two rumors (rumor 1 and rumor 2) spreading among the users of a social
media platform. We track the following 8 state variables:

• x1: Potential users of OSM (individuals who could join but have not yet joined).

• x2: Active users of OSM (currently using the platform, susceptible to rumors).

• x3: Non-users (disconnected) from OSM who have abandoned and never joined the platform again,
after a delay.

• x4: Considering rumor 1 (they heard rumor 1 and are thinking about it).

• x5: Considering rumor 2.

• x6: Believers of rumor 1 (those actively spreading or convinced by rumor 1).

• x7: Believers of rumor 2.

• x8: Skeptics for either rumor (individuals who do not believe either rumor).

The system of equations is: 

ẋ1 = Λ− αx1x2 − µx1,

ẋ2 = αx1x2 − ηx2 x3(t− τ)− µx2,

ẋ3 = ηx2 x3(t− τ)− µx3 + ωx8,

ẋ4 =
β1x2x6

1 + α1x2 + ϵ1x6
− γ1x4,

ẋ5 =
β2x2x7

1 + α2x2 + ϵ2x7
− γ2x5,

ẋ6 = γ1x4 − µ1x6,

ẋ7 = γ2x5 − µ2x7,

ẋ8 = µ1x6 + µ2x7 − ωx8.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

All parameters are nonnegative, and τ > 0 is a delay. We write the delay explicitly as x3(t− τ) through-
out. Our goals are to prove first that the solutions are essentially positive, then to identify the equilibria of
this system and study their stability by looking at the linear approximation.
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2 Matlab’s Simulations

(a) x1(t) (b) x2(t) (c) x3(t) (d) x4(t)

(e) x5(t) (f) x6(t) (g) x7(t) (h) x8(t)

Figure 1: Equilibrium point E1 at τ = 0 with and without perturbation. E1 is unstable.

(a) x1(t) (b) x2(t) (c) x3(t) (d) x4(t)

(e) x5(t) (f) x6(t) (g) x7(t) (h) x8(t)

Figure 2: Equilibrium point E2 at τ = 0, with and without perturbation. E2 is stable. Note: with τ = 0 there 
is no delay-induced mechanism; accordingly, no delay-induced sustained oscillations appear, and trajectories 
converge to the equilibrium.

3 Conclusions
In this study, we analyzed a mathematical model of rumor spread on social media, highlighting the impact of 
delays, rumor incidence rates, and user skepticism on rumor propagation dynamics. Our results, supported by 
numerical simulations and stability analyses, align with similar research, confirming and expanding previous 
insights.
We have developed and analyzed a delay differential model to explore the dynamics of two coexisting rumors
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spreading through an online social media (OSM) platform.
The existence and stability of the rumor present equilibrium (E2) depends on certain critical boundary
conditions that control rumor persistence, similar to the basic reproduction number in epidemic models.
Just like how diseases spread if the infection rate crosses a certain limit. In simple terms, our model
shows that if enough people start sharing a rumor, it won’t just disappear; instead, it will keep spreading
continuously throughout the network.[10]
Our research show that time delays play an important role in how rumors spread. Similar to previous
research [8], we found that delays, such as hesitation periods or time before users respond to misinformation,
can create complex behaviors including oscillations or periodic rumor outbreaks (Hopf bifurcations), which
make it harder to stop rumors once they appear.
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Abstract 

In this talk we consider some well-known quotients related with either eigenvalue problems, Sobolev or Hardy’s 
inequality. We consider the infimum of these quotients and their discrete analogous in a finite element subspace. We 
estimate the difference between the best constants above as the discretization parameter goes to zero and obtain sharp 
convergence rates. This is joint work with Enrique Zuazua. 

Key words Sobolev / Hardy inequalities, Finite element approximation. 

1. INTRODUCTION

The determination and approximation of best constants in functional inequalities, such as those 
related to eigenvalues of elliptic operators (e.g., the Laplacian) or classical inequalities (Sobolev, 
Hardy), are fundamental problems in analysis and numerical mathematics. Best constants are 
generally defined by a minimization procedure for a Rayleigh quotient, 𝐶𝐶𝐴𝐴,𝐵𝐵,𝑋𝑋 = inf𝑢𝑢∈𝑋𝑋

∥𝑢𝑢∥𝐴𝐴
∥𝑢𝑢∥𝐵𝐵

. Key 

questions surrounding these constants include the attainment of the infimum, the structure of the 
set of minimizers (ℳ), and, crucially for applications, their exact computation or efficient 
numerical approximation. The core focus of this work is to establish the optimal convergence rates 
for the Finite Element Method (FEM) approximation of some best constants. 

2. CONTENT: ANALYSIS OF APPROXIMATION RATES
2.1. Standard Elliptic Eigenvalue Problems

For the 1D Laplace problem using piecewise linear finite elements (𝑃𝑃1), the approximation rate is 

known to be 𝜆𝜆1ℎ = 𝜆𝜆1 + ℎ2

12
+ 𝑂𝑂(ℎ4), where ℎ is the mesh size. General theory, as found in

Babuška & Osborn and Chatelin, suggests that for general operators and Hilbert spaces, the 
approximation difference is controlled by the distance between the continuous minimizer 𝑢𝑢1 and 
the approximation space 𝑉𝑉ℎ: 

𝜆𝜆1ℎ(𝑉𝑉ℎ) − 𝜆𝜆1(𝑉𝑉) ≃ dist𝑉𝑉(𝑢𝑢1,𝑉𝑉ℎ)2 = min
𝑣𝑣ℎ∈𝑉𝑉ℎ

� |
Ω
∇𝑢𝑢1 − ∇𝑣𝑣ℎ|2𝑑𝑑𝑑𝑑 

Since the best approximation error is typically bounded by dist𝑉𝑉(𝑢𝑢1,𝑉𝑉ℎ) ≲ ℎ ∥ 𝑢𝑢1 ∥𝐻𝐻2, this 
suggests a rate of 𝑂𝑂(ℎ2). The challenge lies in proving a lower bound, dist𝑉𝑉(𝑢𝑢1,𝑉𝑉ℎ) ≳ ℎ, which 
requires knowing the non-flatness or convexity properties of the minimizer. For instance, in 1D, 
the lower bound is proved using the convexity of 𝑢𝑢1 by estimating min𝑣𝑣ℎ∈𝑃𝑃1ℎ∫ |𝑢𝑢′1 − 𝑣𝑣ℎ′|2 from
below by 𝑐𝑐2ℎ2/12. 

2.2. Sobolev Inequality 

For the Sobolev constant 𝑆𝑆(𝑝𝑝,𝑁𝑁) defined on 𝑊̇𝑊1,𝑝𝑝(ℝ𝑁𝑁) in ℝ𝑁𝑁, the minimizers ℳ are the explicit 
Talenti functions. The approximation rate 𝑆𝑆ℎ − 𝑆𝑆 is derived by linking the approximation error to 
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the Sobolev deficit, 𝛿𝛿(𝑢𝑢) =
∥𝐷𝐷𝐷𝐷∥𝐿𝐿𝑝𝑝(ℝ𝑁𝑁)

∥𝑢𝑢∥𝐿𝐿𝑝𝑝∗(ℝ𝑁𝑁)
− 𝑆𝑆. Using estimates by Figalli and Zhang that relate the

deficit to the distance to the manifold of minimizers ℳ, we showed that the approximation rate is 
bounded by the distance of the discrete minimizer 𝑤𝑤ℎ and the space 𝑉𝑉ℎ to ℳ: 

inf
𝑈𝑈∈ℳ

dist𝑉𝑉
2(𝑈𝑈,𝑤𝑤ℎ) ≲ 𝑆𝑆ℎ − 𝑆𝑆 ≲ inf

𝑈𝑈∈ℳ
dist𝑉𝑉

2(𝑈𝑈,𝑉𝑉ℎ). 

For 𝑝𝑝 = 2, 𝑁𝑁 ≥ 3, we established the final optimal rate: 

𝑆𝑆ℎ(2,𝑁𝑁) − 𝑆𝑆(2,𝑁𝑁) ≃ ℎ
2(𝑁𝑁−2)

𝑁𝑁 , 

which is superior to standard estimates (e.g., ℎ1/3 for 𝑁𝑁 = 3). The critical improvement came from 
adapting the analysis using quasi-norms (inspired by 𝑝𝑝-Laplacian literature) to optimally estimate 
the Sobolev deficit. 

2.3. Hardy Inequality 

The Hardy constant 𝑆𝑆2(𝑁𝑁,Ω) = (𝑁𝑁−2)2

4
 is a singular case, as the infimum is not attained in the

standard 𝐻𝐻1(Ω) space. This requires specialized numerical techniques for the discrete constant 
𝑆𝑆2ℎ. We establish the optimal rate of convergence for 𝑁𝑁 ≥ 3 as: 

𝑆𝑆2ℎ − 𝑆𝑆2 ≃
1

|logℎ|2
. 

This rate is proven using a combination of a lower bound based on the Hardy inequality with 
logarithmic reminders and an upper bound based on approximating a regularized pseudo-
minimizer with 𝑃𝑃ℎ1 functions. 

3. CONCLUSIONS

This research provides a rigorous framework for determining the optimal convergence rates for 
the approximation of best constants in crucial functional inequalities using standard finite element 
methods. By moving beyond classical approximation theory and incorporating recent 
developments in non-linear analysis (Sobolev deficit estimates) and numerical analysis (quasi-
norms), we derived sharp, structure-dependent rates for both the Sobolev and Hardy constants. 
The results highlight that the convergence behavior is highly dependent on the regularity and 
structure of the continuous minimizers, often leading to better convergence rates than those 
predicted by general, worst-case scenario numerical estimates. 

Future work will explore the applications of machine learning models (such as those using ReLU 
activation functions) for approximating these constants, and investigate if a discrete deficit 
analysis can provide alternative optimal bounds. Furthermore, many open questions remain in the 
"hard analysis" of these problems concerning the concentration, regularity, and multiplicity of the 
minimizers. 
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Abstract. This paper examined the growth of meromorphic solutions to higher-order linear 
equations of the form:

An(z)f(z + hn) + An−1(z)f(z + hn−1) + · · ·+ A1(z)f(z + h1) + A0(z)f(z) = An+1(z) (1)

where (An+1(z), . . . , A0(z)) are entire or meromorphic functions and (hi) (for j = 1, . . . , n) are
non-zero distinct complex numbers. Our search extends some earlier results proved by Luo and
Zheng, Beläıdi and Bellaama, using the notion of ϕ-order.
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1 Introduction and main results

Throughout this article we assume that the reader is familiar with the basic results and standard
notation of Nevanlinna’s value distribution theory (see (refer to [8], [9], [10]). In this section we
quote the main concepts and definitions used in the realization of this work.
Definition 1.1 ([3, 6]). The ϕ- (respectively, lower-) order ρ (respectively, µ) of a given
meromorphic function f is represented as ρ(f, ϕ) (respectively, µ(f, ϕ)) and corresponds to the
value given by

ρ(f, ϕ) = lim sup
r→+∞

log T (r, f)

logϕ(r)
, (resp, µ(f, ϕ) = lim inf

r→+∞

log T (r, f)

logϕ(r)
).

When f is entire, then

ρ(f, ϕ) = lim sup
r→+∞

log logM(f, r)

logϕ(r)
, (resp, µ(f, ϕ) = lim inf

r→+∞

log logM(f, r)

logϕ(r)
).

Remark 1.2. ([6]) It is important to note that in this paper, we assume that ϕ : [0,+∞) →
(0,+∞) is a non-decreasing unbounded function that always satisfies the following two condi-
tions:

(i). limr→+∞
logp+1 r

logq ϕ(r)
= 0.

(ii). limr→+∞
logq ϕ(α1r)

logq ϕ(r)
= 1 for some α1 > 1.

Definition 1.3 ([2,3]). Assume that f is a meromorphic function such that 0 < ρ(f, ϕ) = ρ <
+∞. Then the ϕ-type of f is represented as τ(f, ϕ) and corresponds to the value defined as

τ(f, ϕ) = lim sup
r→∞

T (r, f)

ϕ(r)ρ
.

If f is entire, then

τ(f, ϕ) = lim sup
r→∞

logM(r, f)

ϕ(r)ρ
.

Similarly, if 0 < µ(f, ϕ) = µ < +∞, the corresponding ϕ-lower types are represented and defined
by

τ(f, ϕ) = lim inf
r→∞

T (r, f)

ϕ(r)µ
(respectively, τ(f, ϕ) = lim inf

r→∞

logM(r, f)

ϕ(r)µ
).
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Definition 1.0.1. ([6]) Given a ∈ C = C∪ {∞}, we define the deficiency of a with respect to a
given meromorphic function f , denoted by δ(a, f), as follows:

δ(a, f) = lim inf
r→+∞

m
(
r, 1

f−a

)
T (r, f)

= 1− lim sup
r→+∞

N
(
r, 1

f−a

)
T (r, f)

, a 6=∞,

δ(∞, f) = lim inf
r→+∞

m(r, f)

T (r, f)
= 1− lim sup

r→+∞

N(r, f)

T (r, f)
.

Definition 1.0.2. ([13]) Let f be a meromorphic function. Then, the ϕ- exponent of convergence
of zero-sequence of f is defined by

λ(f, ϕ) = lim sup
r→+∞

logN(r, 1
f
)

logϕ(r)
.

Definition 1.0.3. ([13]) Let ϕ : [0,+∞) → (0,+∞) be a non-decreasing unbounded function,
and p, q be positive integers that satisfy p > q > 1. Then the [p, q]− ϕ order of a meromorphic
function f are respectively defined by

ρ[p,q](f, ϕ) = lim sup
r→+∞

log T (r, f)

logϕ(r)
.

The purpose of this paper is to extend the previous results by employing the concept of
(p, q)− ϕ order. Indeed, we will prove the following results.
Theorem 1.1 Let Aj(z) (for j = 0, . . . , n + 1) be entire functions of ϕ-order and let k, l ∈
{0, 1, 2, . . . , n + 1} with An+1 6≡ 0 such that max{µ(Ak, ϕ), ρ(Aj, ϕ), j 6= k, l} = ρ 6 µ(Al, ϕ) <
∞, µ(Al, ϕ) > 0. If the following assumptions hold simultaneously:
1. τ(Al, ϕ) > τ(Ak, ϕ), when µ(Al, ϕ) = µ(Ak, ϕ)
2. max{τ(Aj, ϕ) : ρ(Aj, ϕ) = µ(Al, ϕ), j 6= k, l} = τ1 < τ(Al, ϕ), when µ(Al, ϕ) = max{ρ(Aj, ϕ); j 6=
k, l},
then every meromorphic solution f of equation (1) satisfies ρ(f, ϕ) > µ(Al, ϕ).
Theorem 1.2 Let Aj(z) (for j = 0, . . . , n + 1) be meromorphic functions of ϕ-order and let
k, l ∈ {0, 1, 2, . . . , n + 1} with An+1 6≡ 0 such that max{µ(Ak, ϕ), ρ(Aj, ϕ), j 6= k, l} = ρ 6
µ(Al, ϕ) <∞, µ(Al, ϕ) > 0. If the following assumptions hold simultaneously:
1. τ(Al, ϕ) > τ(Ak, ϕ), when µ(Al, ϕ) = µ(Ak, ϕ);
2. ∑

ρ(Aj ,ϕ)=µ(Al,ϕ)>0, j 6=k,l

τ(Aj, ϕ) < τ(Al, ϕ) < +∞

when µ(Al, ϕ) = max{ρ(Aj, ϕ), j 6= k, l};

3. ∑
ρ(Aj ,ϕ)=µ(Al,ϕ)>0, j 6=k,l

τ(Aj, ϕ) + τ(Ak, ϕ) < τ(Al, ϕ) < +∞

when µ(Al, ϕ) = µ(Ak, ϕ) = max{ρ(Aj, ϕ), j 6= k, l};

4. λ
(

1
Al
, ϕ
)
< µ(Al, ϕ) <∞.

Then every meromorphic solution f of equation (1) satisfies ρ(f, ϕ) > µ(Al, ϕ).
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2 AUXILIARY LEMMAS

With a view to to prove our theorems, we need the following proposition and lemmas. The
Lebesgue linear measure of a set E ⊂ [0,+∞) is m (E) = lim

∫
E
dt, and the logarithmic measure

of a set F ⊂ (1,+∞) is ml (F ) = lim
∫
F
dt
t
.

Lemma 2.1 ([8]) Let f be a meromorphic function, and h be a non-zero complex constant.
Then we have that for r → +∞.

(1 + o (1))T (r − |h|, f (z)) 6 T (r, f (z + h)) 6 (1 + o (1))T (r + |h|, f (z)) .

Lemma 2.2 ([11]) Let p, q be positive integers and satisfy p > q > 1. Suppose that f is a
meromorphic function such that ρ[p,q](f, ϕ) < +∞. then, for any given ε > 0, we have

exp
{
− expp

{
(ρ[p,q](f, ϕ) + ε) logq ϕ(r)

}}
≤ |f(z)|

≤ expp+1

{
(ρ[p,q](f, ϕ) + ε) logq ϕ(r)

}
(r /∈ E1),

where E1 ⊂ (1,+∞) is a set of r of finite linear measure.
Lemma 2.3 ([12]) Let f be a meromorphic function of finite ϕ-order ρ := ρ(f, ϕ). Then, for
any pair of distinct complex numbers η1, η2, β > 1 and any given ε > 0, there exists a subset
E2 ⊂ (1,∞) of finite logarithmic measure such that, for all |z| /∈ E2, we have

exp

{
−(ϕ (r))ρ+β+ε

r

}
6

∣∣∣∣f (z + η1)

f (z + η2)

∣∣∣∣ 6 exp

{
(ϕ (r))ρ+β+ε

r

}
.

Lemma 2.4 Let f be an entire function with µ(f, ϕ) < ∞, then for any given ε > 0, there
exists a set E3 ⊂ (1,+∞) having infinite logarithmic measure such that for all r ∈ E3, we have

µ(f, ϕ) = lim
r→+∞,r∈E3

log T (r, f)

logϕ(r)
= lim

r→+∞,r∈E3

log2M(r, f)

logϕ(r)
,

and
M(r, f) < exp{{ϕ(r)}µ(f,ϕ)+ε}.

Proof. From the definition of the lower ϕ-order, there exists a sequence {rm}∞m=1 tending to
+∞ satisfying (1 + 1

m
)rm < rm+1, and

lim
rm→+∞

log2M(rm, f)

logϕ(rm)
= µ(f, ϕ).

Hence, for any given ε > 0, there exists an m1 such that for m > m1 and any r ∈ [rm, (1+ 1
m

)rm],
we obtain

log2M(rm, f)

log(1 + 1
m

)rm
6

log2M(r, f)

logϕ(r)
6

log2M((1 + 1
m

)rm, f)

logϕ(rm)
.

Let E3 =
⋃+∞
m=m1

[rm, (1 + 1
m

)rm], then for any r ∈ E3, we have

lim
r→+∞,r∈E3

log2M(r, f)

logϕ(r)
= lim

rm→+∞

log2M(rm, f)

logϕ(rm)
= µ(f, ϕ),

and

ml(E) =
∞∑

m=m1

∫ (1+ 1
m
)rm

rm

dt

t
=

∞∑
m=m1

log(1 +
1

m
) =∞.

The proof is complete.
Lemma 2.5 ([7]) Let f be a meromorphic function of finite ϕ-order ρ(f, ϕ), and let η1, η2 be
two distinct complex numbers. Then, for each ε > 0, we have

m

(
r,
f(z + η1)

f(z + η2)

)
= O

(
ϕ(r)ρ(f,ϕ)−1+ε

)
.
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Lemma 2.6 ([1]) Let p > 1 and f be a meromorphic function with with 1 6 µp(f, ϕ) < +∞
and nonzero finite iterated lower p − ϕ type, τ p(f, ϕ). Then there exists some E4 ⊂ (1,+∞)
with ml(E4) = +∞, such that, for |z| = r ∈ E4,

logp−1 T (r, f) < (τ p(f, ϕ) + ε){ϕ(r)}µp(f,ϕ)
where

µp(f, ϕ) = lim inf
r→∞

logp T (r, f)

logϕ(r)
,

and

τ p(f, ϕ) = lim inf
r→∞

logp−1 T (r, f)

ϕ(r)µp(f,ϕ)
.

Lemma 2.7 ([12]) If f is a meromorphic function with 1 6 µ(f, ϕ) < +∞, then there exists
some E5 ⊂ (1,+∞) with ml(E5) = +∞, so that, for |z| = r ∈ E5,

T (r, f) < (ϕ(r))µ(f,ϕ)+ε.

Lemma 2.8 ([5]) Let f be an entire function with 0 < µ(f, ϕ) = µ <∞. Then, there exists a
set E6 ⊂ (1,∞) of infinite logarithmic measure such that, for all r ∈ E6, we have

τ = τ(f, ϕ) = lim
r→∞,r∈E6

logM(r, f)

(ϕ(r))µ
.

3 Proof of Theorem 1.1

If the solution ρ(f, ϕ) =∞, the result is valid.
Now we assume that ρ(f, ϕ) is finite. Using equation (1), we obtain

|Al(z)| ≤
n∑
j=1
j 6=k,l

|Aj(z)|
∣∣∣∣f(z + cj)

f(z + cl)

∣∣∣∣+ |Ak(z)|
∣∣∣∣f(z + ck)

f(z + cl)

∣∣∣∣+ |A0(z)|
∣∣∣∣ f(z)

f(z + cl)

∣∣∣∣+

∣∣∣∣ An+1(z)

f(z + cl)

∣∣∣∣ . (2)

From Lemma 2.1, we get

ρ(f(z + cl), ϕ) = ρ

(
1

f(z + cl)
, ϕ

)
= ρ(f, ϕ). (3)

Then, by using Lemma 2.2, ( in the case p = q = 1) for any given ε > 0, we can find a subset
E1 ⊂ (1,+∞), satisfying ml(E1) < ∞ such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1 and
sufficiently large r, we have ∣∣∣∣ 1

f(z + cl)

∣∣∣∣ 6 exp
{

(ϕ(r))(ρ(f,ϕ)+ε)
}
. (4)

Therefore, from Lemma 2.3 that for any ε > 0 and β > 1, there exists a subset E2 ⊂ (1,+∞)
with finite logarithmic measure such that for all |z| = r /∈ [0, 1] ∪ E2, we have∣∣∣∣ f(z)

f(z + cl)

∣∣∣∣ 6 exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

}
,

∣∣∣∣f(z + cj)

f(z + cl)

∣∣∣∣ 6 exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

}
. (5)

We divide our proof into three cases.
Case 1. If max{ρ(Aj, ϕ), j 6= k, l} = β1 < µ(Ak, ϕ) = µ(Al, ϕ), τ(Al, ϕ) > τ(Ak, ϕ). Through
the use of the definition of τ(Ak, ϕ) and Lemma 2.8, for any ε(> 0), there exists a subset
E6 ⊂ (1,+∞) having infinite logarithmic measure such that for all r ∈ E6, we have

(6)|Ak(z)| 6 exp{(τ(Ak, ϕ) + ε)ϕ(r)µ(Ak,ϕ)} = exp{(τ(Ak, ϕ) + ε)(ϕ(r))µ(Al,ϕ)}. 
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From the definition of τ(Al, ϕ), for sufficiently small ε > 0 and sufficiently large r, we have

|Al(z)| > exp{(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ)}. (7)

On the other hand, by making use of the definition of ρ(Aj, ϕ), for all given ε(> 0) and sufficiently
large r, we can write

|Aj(z)| 6 exp{(ϕ(r))ρ(Aj ,ϕ)+ε} 6 exp{(ϕ(r))β1+ε}, j 6= k, l. (8)

By replacing (4), (5), (6), (7) and (8) in (2), for all given ε(> 0) and sufficiently large r ∈
E6\([0, 1] ∪ E1 ∪ E2)

exp{(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ)} 6 (n− 1) exp{(ϕ(r))β1+ε} exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

}

+exp{(τ(Ak, ϕ)+ε)(ϕ(r))µ(Al,ϕ)} exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

}
+exp{(ϕ(r))β1+ε} exp

{
(ϕ(r))(ρ(f,ϕ)+ε)

}
.

(9)
Let us pick some ε small enough to satisfy

0 < 2ε < min{µ(Al, ϕ)− β1, τ(Al, ϕ)− τ(Ak, ϕ)},

therefore, for sufficiently large r ∈ E6\([0, 1] ∪ E1 ∪ E2), the formula (9) becomes

exp{(τ(Al, ϕ)− τ(Ak, ϕ)− 2ε)(ϕ(r))µ(Al,ϕ)−ε} 6 exp
{

(ϕ(r))(ρ(f,ϕ)+ε)
}
,

Then, by making use of Lemma 2.3, Definition 1.1, we get µ(Al, ϕ) − 2ε 6 (ρ(f, ϕ). Using the
fact that ε is arbitrary, we obtain ρ(f, ϕ) > µ(Al, ϕ).
Case 2. Assume that µ(Ak, , ϕ) < max{ρ(Aj, ϕ), j 6= k, l} = µ(Al, ϕ) and max{τ(Aj, ϕ) :
ρ(Aj, ϕ) = µ(Al, ϕ), j 6= k, l} = τ1 < τ(Al, ϕ).
Using the definition of µ(Ak, ϕ) and Lemma 2.4, for any given ε(> 0), there exists a subset
E3 ⊂ (1,+∞) satisfying ml(E3) such that for all r ∈ E3, we have

|Ak(z)| 6 exp{(ϕ(r))µ(Ak,ϕ)+ε}. (10)

Using the definitions of τ(Aj, ϕ) and ρ(Aj, ϕ), for any given ε > 0 and sufficiently large r, we
get

|Aj(z)| 6

{
exp ((τ1 + ε)ϕ(r)µ(Al,ϕ)), if ρ(Aj, ϕ) = µ(Al, ϕ), j 6= k, l,

exp (ϕ(r)ρ(Aj ,ϕ)+ε) 6 exp (ϕ(r)µ(Al,ϕ)−ε), if ρ(Aj, ϕ) < µ(Al, ϕ), j 6= k, l.
(11)

Therefore, by replacing (4), (5), (7), (10) and (11) into (2), for β > 1 and all z satisfying
r ∈ E3\([0, 1] ∪ E1 ∪ E2) sufficiently large, we obtain

exp{(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ)} 6 O

(
exp ((τ1 + ε)ϕ(r)µ(Al,ϕ)) exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

})

+O

(
exp (ϕ(r)µ(Al,ϕ)−ε) exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

})

+ exp{(ϕ(r))µ(Ak,ϕ)+ε} exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

}
+ exp ((τ1 + ε)ϕ(r)µ(Al,ϕ)) exp

{
(ϕ(r))(ρ(f,ϕ)+ε)

}
.

(12)
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We can now select a sufficiently small ε that satisfies

0 < 2ε < min{µ(Al, ϕ)− µ(Ak, ϕ), τ(Al, ϕ)− τ1},

then from (12), for sufficiently large (r ∈ E3 \ ([0, 1] ∪ E1 ∪ E2)), we can write

exp{(τ(Al, ϕ)− τ1 − 2ε)(ϕ(r))µ(Al,ϕ)−ε} 6 exp
{

(ϕ(r))(ρ(f,ϕ)+ε)
}
.

Then, by making use of Lemma 2.3, Definition 1.1, we get µ(Al, ϕ)− ε 6 ρ(f, ϕ) + ε). Since
ε > 0 is arbitrary, we conclude that ρ(f, ϕ) > µ(Al, ϕ).
Case 3. Assume that max{ρ(Aj, ϕ), j 6= k, l} = µ(Ak, ϕ) = µ(Al, ϕ) and max{τ(Ak, ϕ), τ(Aj, ϕ) :
ρ(Aj, ϕ) = µ(Al, ϕ), j 6= k, l} = τ2 < τ(Al, ϕ).
Therefore, by replacing (4), (5), (6),(7) and (11) into (2), for β > 1 and all z satisfying
r ∈ E6\([0, 1] ∪ E1 ∪ E2) sufficiently large, we get

exp{(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ)} 6 O

(
exp ((τ2 + ε)ϕ(r)µ(Al,ϕ)) exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

})

+O

(
exp (ϕ(r)µ(Al,ϕ)−ε) exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

})

+exp{(τ(Ak, ϕ)+ε)(ϕ(r))µ(Al,ϕ)} exp

{
(ϕ (r))ρ(f,ϕ)+β+ε

r

}
+exp ((τ2 + ε)ϕ(r)µ(Al,ϕ)) exp

{
(ϕ(r))(ρ(f,ϕ)+ε)

}
.

(13)
We can now select a sufficiently small ε that satisfies 0 < 2ε < τ(Al, ϕ)− τ2, then from (13), for
sufficiently large (r ∈ E6 \ ([0, 1] ∪ E1 ∪ E2)), we can write

exp{(τ(Al, ϕ)− τ2 − 2ε)(ϕ(r))µ(Al,ϕ)−ε} 6 exp
{

(ϕ(r))(ρ(f,ϕ)+ε)
}
.

Then, by making use of Lemma 2.3, Definition 1.1, we get µ(Al, ϕ)− ε 6 ρ(f, ϕ) + ε). Since
ε > 0 is arbitrary, we conclude that ρ(f, ϕ) > µ(Al, ϕ).

4 Proof of Theorem 1.2

When the solution f satisfies ρ(f, ϕ) =∞, the result is valid.
Suppose now that ρ(f, ϕ) is finite. From equation (1) and Lemma 2.1, we get

T (r, Al(z)) = m(r, Al(z)) +N(r, Al(z))

6
n+1∑
j=0
j 6=k,l

T (r, Aj(z)) + T (r, Ak(z)) +N(r, Al(z))

+ T

(
r,

1

f(z + cl)

)
+

n∑
j=1
j 6=l

m

(
r,
f(z + cj)

f(z + cl)

)
+m

(
r,

f(z)

f(z + cl)

)
+O(1)

6
n+1∑
j=0
j 6=k,l

T (r, Aj(z))+T (r, Ak(z))+N(r, Al(z))+2T (2r, f)+
n∑
j=1
j 6=l

m

(
r,
f(z + cj)

f(z + cl)

)
+m

(
r,

f(z)

f(z + cl)

)
+O(1).

(14)
From the definition of the ϕ- exponent of convergence of pole-sequence of Al, for any ε > 0 and
sufficiently large r, we can write

N(r, Al) 6 (ϕ(r))
λ( 1

Al
,ϕ)+ε

. (15)
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From Lemma 2.5, for the above ε, we get

m

(
r,

f(z)

f(z + cl)

)
= O(rρ(f,ϕ)−1+ε),m

(
r,
f(z + ci)

f(z + cl)

)
= O(rρ(f,ϕ)−1+ε), j 6= l. (16)

Case 1. If max{ρ(Aj, ϕ), j 6= k, l} = β < µ(Ak, ϕ) = µ(Al, ϕ), τ(Al, ϕ) > τ(Ak, ϕ). Using the
definition of the lower type of Ak and Lemma 2.6, for p = 1 and any given ε(> 0), there exists
a subset E4 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈ E4, we have

T (r, Ak) < (τ(Ak, ϕ) + ε){ϕ(r)}µ(Ak,ϕ) = (τ(Ak, ϕ) + ε){ϕ(r)}µ(Al,ϕ), (17)

and from the definitions of the ϕ-order of Aj , f and the ϕ-lower type of Al, for any given ε
defined above and sufficiently large r, we have

T (r, Aj) 6 (ϕ(r))ρ(Aj ,ϕ)+ε 6 (ϕ(r))β+ε, T (r, f) 6 (ϕ(r))ρ(f,ϕ)+ε (18)

and
T (r, Al) > (τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ). (19)

By replacing (15), (16), (17), (18) and (19) into (14), for sufficiently large r ∈ E4, we get

(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ) 6 n(ϕ(r))β+ε + (τ(Ak, ϕ) + ε){ϕ(r)}µ(Al,ϕ)

+ (ϕ(r))
λ( 1

Al
,ϕ)+ε)

+ 2(ϕ(2r))ρ(f,ϕ)+ε +O(rρ(f,ϕ)−1+ε). (20)

We can now select a sufficiently small ε that satisfies

0 < 2ε < min{τ(Al, ϕ)− τ(Ak, ϕ), µ(Al, ϕ)− β, µ(Al, ϕ)− λ(
1

Al
, ϕ)}

then from (20), for sufficiently large (r ∈ E4 \ ([0, 1] ∪ E1 ∪ E2)), we can write

(τ(Al, ϕ)− τ(Ak, ϕ)− 2ε))(ϕ(r))µ(Al,ϕ)−ε 6 (ϕ(r))ρ(f,ϕ)+ε.

Then, by making use of Remark 1.2, Definition 1.1, we get

µ(Al, ϕ) 6 ρ(f, ϕ) + 2ε.

Since ε > 0 is arbitrary, we deduce that ρ(f, ϕ) > µ(Al, ϕ).
Case 2. If

µ(Ak, ϕ) < max{ρ(Aj, ϕ) : j 6= k, l} = µ(Al, ϕ)

and ∑
ρ(Aj ,ϕ)=µ(Al,ϕ)>0, j 6=k,l

τ(Aj, ϕ) < τ(Al, ϕ) < +∞

Then, we can find a set I ⊆ {0, 1, . . . , n + 1} \ {k, l}, such that for j ∈ I, we can write
ρ(Aj, ϕ) = µ(Al, ϕ) with ∑

j∈I

τ(Aj, ϕ) = τ1 < τ(Al, ϕ),

and for j ∈ {0, 1, . . . , n+ 1} \ (I ∪ {k, l}), we have ρ(Aj, ϕ) < µ(Al, ϕ). Using the definitions of
the ϕ -order and the lower ϕ -order and the ϕ -type, for any given ε > 0 and sufficiently large
r, we get

(21)

and

T (r, Aj ) 6 (τ(Aj , ϕ) + ε)ϕ(r)µ(Al,ϕ), j ∈ I,

T (r, Aj ) 6 ϕ(r)µ(Al,ϕ)−ε, j ∈ {0, 1, . . . , n + 1} \ (I ∪ {k, l}). (22)
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Through the use of the definition of µ(Ak, ϕ) and Lemma 2.7, for any given ε(> 0), there exists
a set E5 ⊂ (1,+∞) with ml = +∞ such that for all r ∈ E5, we have

T (r, Ak) 6 (ϕ(r))µ(Ak,ϕ)+ε. (23)

By replacing (15), (16), (18),(19), (21), (22), (23) into (14), we get for all z satisfying |z| = r ∈ E5

sufficiently large

(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ) 6
∑
j∈I

(τ(Aj, ϕ) + ε)(ϕ(r))µ(Al,ϕ)

+
∑

j∈{0,1,...,n+1}\(I∪{k,l})

(ϕ(r))µ(Al,ϕ)−ε + (ϕ(r))µ(Ak,ϕ)+ε

+(ϕ(r))
λ( 1

Al
,ϕ)+ε)

+ 2(ϕ(2r))ρ(f,ϕ)+ε +O(rρ(f,ϕ)−1+ε)

6 (τ1 + nε)(ϕ(r))µ(Al,ϕ) +O((ϕ(r))µ(Al,ϕ)−ε)) + (ϕ(r))µ(Ak,ϕ)+ε)

+ (ϕ(r))
λ( 1

Al
,ϕ)+ε)

+ 2(ϕ(2r))ρ(f,ϕ)+ε +O(rρ(f,ϕ)−1+ε). (24)

We can now select a sufficiently small ε that satisfies

0 < ε < min{µ(Al, ϕ)− µ(Ak, ϕ)

2
,
µ(Al, ϕ)− λ( 1

Al
, ϕ)

2
,
τ(Al, ϕ)− τ1

n+ 1
}

As a result, from (24) and for all z satisfying |z| = r ∈ E5 sufficiently large

(τ(Al, ϕ)− τ1 − (n+ 1)ε)ϕ(r)µ(Al,ϕ)−ε) 6 ϕ(r)ρ(f,ϕ)+ε.

Then, by making use of Remark 1.2, Definition 1.1, we get

µ(Al, ϕ)− 2ε 6 ρ(f, ϕ).

Since ε > 0 is arbitrary, we deduce that ρ(f, ϕ) > µ(Al, ϕ).
Case 3. If

max{ρ(Aj, ϕ), j 6= k, l} = µ(Ak, ϕ) = µ(Al, ϕ)

and ∑
ρ(Aj ,ϕ)=µ(Al,ϕ)>0,j 6=k,l

τ(Aj, ϕ) + τ(Ak, ϕ) < τ(Al, ϕ) < +∞.

Then, by substituting (15), (16),(17), (18),(19), (21), (22), into (14), for all z satisfying |z| =
r ∈ E4 sufficiently large, we have

(τ(Al, ϕ)− ε)(ϕ(r))µ(Al,ϕ) 6
∑
j∈I

(τ(Aj, ϕ) + ε)(ϕ(r))µ(Al,ϕ) +
∑

j∈{0,1,...,n+1}\(I∪{k,l})

(ϕ(r))µ(Al,ϕ)−ε

+(τ(Ak, ϕ) + ε)(ϕ(r))µ(Al,ϕ) + (ϕ(r))
λ( 1

Al
,ϕ)+ε

+ 2(2ϕ(r))ρ(f,ϕ)+ε +O((ϕ(r))ρ(f,ϕ)−1+ε)

6 (τ1 + τ(Ak, ϕ) + (n+ 1)ε)rµ(Al,ϕ) +O(ϕ(r)µ(Al,ϕ)−ε)

+ ϕ(r)
λ( 1

Al
,ϕ)+ε

+ 2(2ϕ(r))ρ(f,ϕ)+ε +O(ϕ(r)ρ(f,ϕ)−1+ε). (25)

We can now select a sufficiently small ε that satisfies

0 < ε < min{
µ(Al, ϕ)− λ( 1

Al
, ϕ)

2
,
τ(Al, ϕ)− τ1 − τ(Ak, ϕ)

n+ 2
}

As a result, from (25) and for all z satisfying |z| = r ∈ E4 sufficiently large

(τ(Al, ϕ) − τ1 − τ(Ak, ϕ) − (n + 2)ε)(ϕ(r))µ(Al,ϕ)−ε) 6 (ϕ(r))ρ(f,ϕ)+ε. 
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Then, by making use of Remark 1.2, Definition 1.1, we get

µ(Al, ϕ)− 2ε 6 ρ(f, ϕ).

Since ε > 0 is arbitrary, we deduce that ρ(f, ϕ) > µ(Al, ϕ).
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Abstract  

The effectiveness of the learning process depends largely on students’ ability to maintain attention during 

instruction and to retain knowledge over time. While educational psychology has long documented the forgetting 

curve and the benefits of repetition. This paper proposes a mathematical framework for modeling both retention and 

attention in the educational process. Retention is described through an exponential decay function, extended with 

impulse-like reinforcement to represent spaced repetition, while attention dynamics are approximated using 

Gaussian and exponential models. Numerical simulations illustrate the differences between simple forgetting, 

forgetting with repetition, and learning scenarios influenced by attention. The results indicate that strategic reviews 

can significantly increase long-term knowledge retention, while shorter, well-timed lessons optimize attention. 

Beyond theoretical insights, the proposed equations have practical applicability in lesson planning, scheduling 

effective repetitions, and optimizing the duration of teaching sessions and breaks.  

Key words: Educational data analysis; Learning optimization; Mathematical modeling; Forgetting curve.  

1. INTRODUCTION

Education relies on two key cognitive mechanisms: attention and retention. Research over the past

century has shown that learning depends on how the brain processes, stores, and retrieves

information. Ebbinghaus’s forgetting curve (1885) revealed that memory decays exponentially, but

repetition improves long-term retention. Attention, in contrast, varies dynamically, rising at the start

of a lesson, peaking, then declining with fatigue or distraction. Combining models of attention and

retention offers a valuable framework for applying mathematics and computer science to education,

enabling data-driven strategies for lesson design, review scheduling, and digital tool integration.

2. CONTENT
Learning is strongly influenced by two cognitive processes: retention, which reflects the ability to store

knowledge, and attention, which determines the capacity to focus during instruction. Mathematical

models of these phenomena allow researchers to describe and predict how information is remembered or

forgotten, and how concentration fluctuates over time.

The Forgetting Curve

The process of forgetting information was first systematically studied by Hermann Ebbinghaus in

1885. Through experiments based on memorizing nonsense syllables, he observed that information is

lost rapidly immediately after learning, and that the rate of forgetting then slows progressively. This

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

209

mailto:maria.gheorghiu@stud.electro.upb.ro
mailto:simona.bibic@upb.ro
mailto:corina.bogdan@unitbv.ro


 

phenomenon was graphically represented in the so-called “forgetting curve,” which describes the 

exponential decline of memory retention [1, 3]. From a mathematical perspective, this dynamic can 

be approximated by the equation:  

(1) 

where R0 represents the initial level of retention, t is the time elapsed since learning, and λ is the 

forgetting rate.  

Spaced Repetition  

To analyze the phenomenon of forgetting, educational psychology introduced the concept of spaced 

repetition [2]. This principle states that information is retained more effectively when reviews are 

performed at increasing intervals, rather than when they are concentrated in a single session.  

(2) 

where t indicates the moments when reviews occur, and α represents the contribution of each review 

to memory consolidation. Thus, after every review, the retention curve rises again close to its initial 

level, and the rate of decline becomes slower.  

Attention Models  

Students’ attention during a lesson is not constant but rather fluctuate over time. In literature, several 

mathematical formulas have been proposed to approximate this dynamic. In this paper, two models 

are analyzed: the logistic function and the Gaussian function.  

Logistic function  

(3) 

This equation describes a gradual increase in attention from a low level to a maximum. The parameter β 

controls the rate of growth, while t0 indicates the moment when attention reaches 50% of its maximum 

value. The logistic model is suitable for capturing the initial phase of the lesson, when students shift from 

distraction or lack of focus to a high level of concentration. However, its limitation is that attention tends 

toward a constant value, without describing the natural decline that occurs in the later stages of a lesson.  

Gaussian function  

(4) 

The Gaussian function represents attention as a bell-shaped distribution: it increases until it reaches a 

maximum μ, then progressively decreases. The parameter σ controls the width of the attention window. 

This model is more realistic for full lessons, as it captures both the activation of attention at the beginning 

and its decline due to fatigue or loss of interest.  

3. CONCLUSIONS
This study highlighted how mathematical models can describe two essential dimensions of learning:

memory retention and student attention. The forgetting curve, reinforced through spaced repetition, and

the Gaussian or logistic functions for attention provide useful tools for predicting and optimizing learning

outcomes.
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Abstract

This paper studies some results on solutions associated with interval-
valued optimal control problems driven by generalized invariant convex
functionals. Necessary conditions of optimality are stated for the consid-
ered optimization problem. Also, the sufficiency of the necessary optimal-
ity conditions is investigated.

Keywords: optimization problem; interval-valued functionals; (q, w) − π-
invexity; LU-optimal solution.

1 Introduction
Most of the real-world problems have arisen related to measurement errors due 
to uncertainty or imprecision of the data. The branches most affected by these 
errors are industry, economics, and science. Thus, there appeared the neces-
sity to optimize various real-world problems. Interval-valued optimization is an 
emerging branch of mathematics that deals with the uncertainty of optimiza-
tion problems. Optimality conditions and duality theory play an essential role 
in the optimization model. The present paper studies some results on solutions 
associated with a class of interval-valued optimal control problems driven by 
generalized invex functionals. The topic covered in this article is a developing 
area of operations research that plays a vital role in addressing uncertainty in 
optimization problems.

2 Preliminaries and problem formulation
In the following, we establish the notations and elements in order to formulate 

the main results stated in the present study.[ Let ]I be the family of closed bounded real intervals. If A ∈ I, then A =

aL, aU , with aL and aU as the lower and upper bounds for A, respectively.
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For aL = aU = a, we get A = [a, a] = a is a real scalar. If A =
[
aL, aU

]
,

B =
[
bL, bU

]
∈ I, we define:

(i) A+B = {a+ b : a ∈ A and b ∈ B} =
[
aL + bL, aU + bU

]
,

(ii) −A = {−a : a ∈ A} =
[
−aU ,−aL

]
.

We notice that A−B = A+ (−B) =
[
aL − bU , aU − bL

]
. We also have

(i) k +A = {k + a : a ∈ A} =
[
k + aL, k + aU

]
,

(ii) kA = {ka : a ∈ A} =


[
kaL, kaU

]
if k ≥ 0[

kaU , kaL
]

if k < 0,
where k ∈ R.

Let Rn denote the classical real n-dimensional Euclidean space. The func-
tion K : Rn×Rp → I is an interval-valued continuously differentiable functional,
that is, K(x, u) = K (x1, x2, . . . , xn, u1, u2, . . . , up) is a closed bounded real in-
terval, for each piecewise smooth state function x : [a, b] ⊂ R → Rn, x =
x(t) ∈ Rn, and piecewise continuous control function u : [a, b] ⊂ R → Rp, u =
u(t) ∈ Rp. The interval-valued functional K can be formulated as K(x, u) =[
KL(x, u),KU (x, u)

]
, with KL(x, u), KU (x, u) two real-valued functionals de-

fined on Rn × Rp and satisfy the condition KL(x, u) ≤ KU (x, u), for each
x = x(t) ∈ Rn and u = u(t) ∈ Rp, with t ∈ [a, b]. Let X be the space of piecewise
smooth state functions x : [a, b] ⊂ R → Rn such that x(a) = α and x(b) = β
and consider it is equipped with the norm ∥ x ∥=∥ x ∥∞ + ∥ ẋ ∥∞. Also, let
U be the space of piecewise continuous control functions u : [a, b] ⊂ R → Rp,
endowed with the uniform norm, as well.

In the following, for A =
[
aL, aU

]
and B =

[
bL, bU

]
, we use the partial

ordering A ≤LU B if and only if aL ≤ bL and aU ≤ bU . Also, we write A <LU B
if and only if A ≤LU B but A ̸= B. This means that A <LU B if and only if

aL < bL, aU ≤ bU , or
aL ≤ bL, aU < bU , or
aL < bL, aU < bU .

We use the notations: fx(t, z, r) := ∂f
∂x (t, z, r), fu(t, z, r) := ∂f

∂u (t, z, r), 1x :=

(1, 1, · · · , 1) ∈ Rn, 1u := (1, 1, · · · , 1) ∈ Rp, K(x, u) :=
∫ b

a
f(t, x(t), u(t))dt,

with f : [a, b]× Rn × Rp → R, K : X × U → R.

The following definitions will be used in the sequel in order to formulate and
prove the main results derived in the present paper.

Definition 2.1 Consider q, w are two real scalars and f : [a, b]×Rn×Rp →
R is a smooth function. If there exist the functions τ : (Rn × Rp)2 → Rn,
ν : (Rn × Rp)2 → Rp, σ : (Rn × Rp)2 → Rn and the real scalar π ∈ R, with
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τ(a) = τ(b) = ν(a) = ν(b) = 0, such that the following inequalities

1

w

(
ew(K(x,u)−K(z,r)) − 1

)
(>) ≥ 1

q

∫ b

a

fx(t, z, r)
(
eqτ(x,u,z,r) − 1x

)
dt

+
1

q

∫ b

a

fu(t, z, r)
(
eqν(x,u,z,r) − 1u

)
dt+ π∥σ(x, u, z, r)∥2, for q ̸= 0, w ̸= 0,

1

w

(
ew(K(x,u)−K(z,r)) − 1

)
(>) ≥

∫ b

a

fx(t, z, r)τ(x, u, z, r)dt

+

∫ b

a

fu(t, z, r)ν(x, u, z, r)dt+ π∥σ(x, u, z, r)∥2, for q = 0, w ̸= 0,

K(x, u)−K(z, r)(>) ≥ 1

q

∫ b

a

fx(t, z, r)
(
eqτ(x,u,z,r) − 1x

)
dt

+
1

q

∫ b

a

fu(t, z, r)
(
eqν(x,u,z,r) − 1u

)
dt+ π∥σ(x, u, z, r)∥2, for q ̸= 0, w = 0,

K(x, u)−K(z, r)(>) ≥
∫ b

a

fx(t, z, r)τ(x, u, z, r)dt+

∫ b

a

fu(t, z, r)ν(x, u, z, r)dt

+ π∥σ(x, u, z, r)∥2, for q = 0, w = 0

are satisfied, then the real-valued functional K is named (strictly) (q, w) − π-
invex at (z, r) on X × U with respect to τ, ν and σ.

Definition 2.2 Consider q, w are two real scalars and f : [a, b]×Rn×Rp →
R is a smooth function. If there exist the functions τ : (Rn × Rp)2 → Rn,
ν : (Rn × Rp)2 → Rp, σ : (Rn × Rp)2 → Rn and the real scalar π ∈ R, with
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τ(a) = τ(b) = ν(a) = ν(b) = 0, such that the following inequalities

1

q

∫ b

a

fx(t, z, r)
(
eqτ(x,u,z,r) − 1x

)
dt

+
1

q

∫ b

a

fu(t, z, r)
(
eqν(x,u,z,r) − 1u

)
dt+ π∥σ(x, u, z, r)∥2 ≥ 0

⇒ 1

w

(
ew(K(x,u)−K(z,r)) − 1

)
(>) ≥ 0, for q ̸= 0, w ̸= 0,∫ b

a

fx(t, z, r)τ(x, u, z, r)dt

+

∫ b

a

fu(t, z, r)ν(x, u, z, r)dt+ π∥σ(x, u, z, r)∥2 ≥ 0

⇒ 1

w

(
ew(K(x,u)−K(z,r)) − 1

)
(>) ≥ 0, for q = 0, w ̸= 0,

1

q

∫ b

a

fx(t, z, r)
(
eqτ(x,u,z,r) − 1x

)
dt

+
1

q

∫ b

a

fu(t, z, r)
(
eqν(x,u,z,r) − 1u

)
dt+ π∥σ(x, u, z, r)∥2 ≥ 0

⇒ K(x, u)−K(z, r)(>) ≥ 0, for q ̸= 0, w = 0,∫ b

a

fx(t, z, r)τ(x, u, z, r)dt+

∫ b

a

fu(t, z, r)ν(x, u, z, r)dt

+ π∥σ(x, u, z, r)∥2 ≥ 0

⇒ K(x, u)−K(z, r)(>) ≥ 0, for q = 0, w = 0

are satisfied, then the real-valued functional K is named (strictly) (q, w) − π-
pseudoinvex at (z, r) on X × U with respect to τ, ν and σ.

Definition 2.3 Consider q, w are two real scalars and f : [a, b]×Rn×Rp →
R is a smooth function. If there exist the functions τ : (Rn × Rp)2 → Rn,
ν : (Rn × Rp)2 → Rp, σ : (Rn × Rp)2 → Rn and the real scalar π ∈ R, with
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τ(a) = τ(b) = ν(a) = ν(b) = 0, such that the following inequalities

1

w

(
ew(K(x,u)−K(z,r)) − 1

)
≤ 0 ⇒ 1

q

∫ b

a

fx(t, z, r)
(
eqτ(x,u,z,r) − 1x

)
dt

+
1

q

∫ b

a

fu(t, z, r)
(
eqν(x,u,z,r) − 1u

)
dt ≤ −π∥σ(x, u, z, r)∥2, for q ̸= 0, w ̸= 0,

1

w

(
ew(K(x,u)−K(z,r)) − 1

)
≤ 0 ⇒

∫ b

a

fx(t, z, r)τ(x, u, z, r)dt

+

∫ b

a

fu(t, z, r)ν(x, u, z, r)dt ≤ −π∥σ(x, u, z, r)∥2, for q = 0, w ̸= 0,

K(x, u)−K(z, r) ≤ 0 ⇒ 1

q

∫ b

a

fx(t, z, r)
(
eqτ(x,u,z,r) − 1x

)
dt

+
1

q

∫ b

a

fu(t, z, r)
(
eqν(x,u,z,r) − 1u

)
dt ≤ −π∥σ(x, u, z, r)∥2, for q ̸= 0, w = 0,

K(x, u)−K(z, r) ≤ 0 ⇒
∫ b

a

fx(t, z, r)τ(x, u, z, r)dt+

∫ b

a

fu(t, z, r)ν(x, u, z, r)dt

≤ −π∥σ(x, u, z, r)∥2, for q = 0, w = 0

are satisfied, then the real-valued functional K is called (q, w)−π-quasiinvex at
(z, r) on X × U with respect to τ, ν and σ.

Remark 2.1 We notice that the exponentials in the right-hand sides of the
above-mentioned inequalities are considered componentwise.

Remark 2.2 Without loss of generality, in the rest of this paper, we assume
that w > 0, q > 0.

In this study, we investigate the primal optimization problem driven by an
interval-valued cost functional:

(P) min(x,u)∈X×U

{
K(x, u) =

[
KL(x, u),KU (x, u)

] }
subject to
gj(t, x, u) ≤ 0, t ∈ [a, b], j = 1, 2, . . . ,m
dxi

dt
= hi(t, x, u), t ∈ [a, b], i = 1, 2, . . . , n

x(a) = α, x(b) = β,

where K : X × U → I is a C1-class interval-valued functional,

KL(x, u) :=

∫ b

a

fL(t, x(t), u(t))dt, KU (x, u) :=

∫ b

a

fU (t, x(t), u(t))dt,

with f : [a, b] × Rn × Rp → I, f = [fL, fU ], a differentiable interval-valued 
function, gj : [a, b] × Rn × Rp → R, j = 1, 2, . . . , m, a differentiable real-valued 
function, and α, β ∈ R as fixed real numbers.
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The next definition, by using the partial ordering defined at the beginning
of this section, introduces the concept of optimal solution for the considered
variational control problem.

Let Ω be the set of all feasible solutions of (P).

Definition 2.4 The pair (x∗, u∗) ∈ Ω is an LU-optimal solution of problem
(P) if there exists no (x0, u0) ∈ Ω satisfying K (x0, u0) <LU K (x∗, u∗).

The following result (see, for instance, Treanţă [?]) presents the Karush-
Kuhn-Tucker-type necessary optimality conditions associated with (P).

Theorem 2.1 If (x∗, u∗) ∈ Ω is an LU-optimal solution of primal variational
control problem (P) and the constraint functions satisfy constraint qualification
at (x∗, u∗), then there exist multipliers (functions on [a, b]) 0 < γL, γU ∈ R,
0 ≤ ζj ∈ R, j = 1, 2, . . . ,m, and λi ∈ R, i = 1, 2, . . . , n, such that the next
relations

γL ∂fL

∂xi
(t, x∗, u∗) + γU ∂fU

∂xi
(t, x∗, u∗) +

m∑
j=1

ζj
∂gj
∂xi

(t, x∗, u∗)

+
n∑

i=1

λi
hi

∂xi
(t, x∗, u∗) +

dλi

dt
(t) = 0, i = 1, n (1)

γL ∂fL

∂us
(t, x∗, u∗) + γU ∂fU

∂us
(t, x∗, u∗) +

m∑
j=1

ζj
∂gj
∂us

(t, x∗, u∗)

+
n∑

i=1

λi
hi

∂us
(t, x∗, u∗) = 0, s = 1, p (2)

ζjgj (t, x
∗, u∗) = 0, j = 1,m (3)

are fulfilled for all t ∈ [a, b], except at discontinuities.

Remark 2.3 The Lagrange multipliers 0 ≤ ζj ∈ R, j = 1, 2, . . . ,m, and
λi ∈ R, i = 1, 2, . . . , n, mentioned in the above theorem, are assumed to be
piecewise smooth functions on [a, b]. The Euler-Lagrange partial differential
equations, given in (1) and (2), are not considered for the discontinuity points
associated with the functions mentioned above.

3 Sufficient conditions of optimality associated
with (P)

In the present section, we formulate and prove two results on sufficient conditions 
of optimality for (P).

The next result, by considering only the (q, w) − π-invexity assumptions of 
the involved functionals, introduces sufficient conditions of optimality for (P).
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Theorem 3.1 Let (x∗, u∗) ∈ Ω, the constraint functions satisfy the suitable
Kuhn-Tucker constraint qualification at (x∗, u∗), and the relations (1)-(3) from
Theorem 2.1 are satisfied for t ∈ [a, b], except at discontinuities. Moreover, we
assume that KL and KU are (q, w)− π1-invex and (q, w)− π2-invex at (x∗, u∗)

with respect to τ, ν and σ, respectively, and G(x, u) :=
∫ b

a

∑m
j=1 ζjgj(t, x, u)dt

and H(x, u) :=
∫ b

a

∑n
i=1 λi[hi(t, x, u)−ẋi]dt are (q, w)−π3-invex and (q, w)−π4-

invex at (x∗, u∗) with respect to τ, ν and σ, respectively. If γLπ1 + γUπ2 + π3 +
π4 ≥ 0, then (x∗, u∗) is an LU-optimal solution to the problem (P).

Proof. We assume that (x∗, u∗) is not an LU-optimal solution of (P). This
fact implies there exists (x0, u0) ∈ Ω such that

K (x0, u0) <LU K (x∗, u∗) ,

that is,{
KL(x0, u0) < KL(x∗, u∗)
KU (x0, u0) < KU (x∗, u∗),

or
{

KL(x0, u0) ≤ KL(x∗, u∗)
KU (x0, u0) < KU (x∗, u∗),

or
{

KL (x0, u0) < KL (x∗, u∗)
KU (x0, u0) ≤ KU (x∗, u∗) .

Since we have w > 0, by using the properties of exponential functions, we get{
1
w [ew{KL(x0,u0)−KL(x∗,u∗)} − 1] < 0
1
w [ew{KU (x0,u0)−KU (x∗,u∗)} − 1] < 0,

or
1
w

[
ew{K

L(x0,u0)−KL(x∗,u∗)} − 1
]
≤ 0

1
w

[
ew{K

U (x0,u0)−KU (x∗,u∗)} − 1
]
< 0,

or


1
w

[
ew{K

L(x0,u0)−KL(x∗,u∗)} − 1
]
< 0

1
w

[
ew{K

U (x0,u0)−KU (x∗,u∗)} − 1
]
≤ 0.

Using the (q, w)−π1-invexity property of KL and the (q, w)−π2-invexity prop-
erty of KU with respect to τ, ν and σ at (x∗, u∗) at (x∗, u∗), the above inequal-
ities imply

1

q

∫ b

a

fL
x (t, x

∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

fL
u (t, x

∗, u∗)
(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π1∥σ(x0, u0, x

∗, u∗)∥2 < 0,

1

q

∫ b

a

fU
x (t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

fU
u (t, x∗, u∗)

(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π2∥σ(x0, u0, x

∗, u∗)∥2 < 0,
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or
1

q

∫ b

a

fL
x (t, x

∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

fL
u (t, x

∗, u∗)
(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π1∥σ(x0, u0, x

∗, u∗)∥2 ≤ 0,

1

q

∫ b

a

fU
x (t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

fU
u (t, x∗, u∗)

(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π2∥σ(x0, u0, x

∗, u∗)∥2 < 0,

or
1

q

∫ b

a

fL
x (t, x

∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

fL
u (t, x

∗, u∗)
(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π1∥σ(x0, u0, x

∗, u∗)∥2 < 0,

1

q

∫ b

a

fU
x (t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

fU
u (t, x∗, u∗)

(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π2∥σ(x0, u0, x

∗, u∗)∥2 ≤ 0.

Since γL > 0 and γU > 0, from the above inequalities, we get

1

q
γL

∫ b

a

fL
x (t, x

∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q
γL

∫ b

a

fL
u (t, x

∗, u∗)
(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ γLπ1∥σ(x0, u0, x

∗, u∗)∥2

+
1

q
γU

∫ b

a

fU
x (t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q
γU

∫ b

a

fU
u (t, x∗, u∗)

(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ γUπ2∥σ(x0, u0, x

∗, u∗)∥2 < 0.

(4)
Next, by considering the feasibility property of (x0, u0) to (P), we obtain

gj (t, x0, u0) ≤ 0, t ∈ [a, b], j = 1,m.

Since we have ζj ≥ 0, j = 1,m, then the relation (3) and the above inequality
involve

m∑
j=1

ζjgj (t, x0, u0) ≤
m∑
j=1

ζjgj (t, x
∗, u∗) , t ∈ [a, b],

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

218



which implies∫ b

a

m∑
j=1

ζjgj (t, x0, u0) dt ≤
∫ b

a

m∑
j=1

ζjgj (t, x
∗, u∗) dt, t ∈ [a, b],

Since we have w > 0, by using the properties of exponential functions, we obtain

1

w

[
ew{

∫ b
a

∑m
j=1 ζjgj(t,x0,u0)dt−

∫ b
a

∑m
j=1 ζjgj(t,x

∗,u∗)dt} − 1
]
≤ 0,

and by considering that G(x, u) is (q, w)− π3-invex at (x∗, u∗), with respect to
τ, ν and σ, we get

1

q

∫ b

a

m∑
j=1

ζj
∂gj
∂x

(t, x∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

m∑
j=1

ζj
∂gj
∂u

(t, x∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1u

)
dt+π3 ∥σ (x0, u0, x

∗, u∗)∥2 ≤ 0.

(5)
In a similar way, by considering the assumption that H(x, u) is (q, w)−π4-invex
at (x∗, u∗), with respect to τ, ν and σ, we get

1

q

∫ b

a

n∑
i=1

λi
∂(hi − ẋi)

∂x
(t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

n∑
i=1

λi
∂(hi − ẋi)

∂u
(t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1u

)
dt

+π4 ∥σ (x0, u0, x
∗, u∗)∥2 ≤ 0. (6)

On adding (4), (5) and (6), from the hypothesis that
(
γLπ1 + γUπ2 + π3 + π4

)
≥

0, and by considering (1), we get a contradiction. This completes the proof. □

The next result, by considering the (q, w) − π-pseudoinvexity and quasiin-
vexity assumptions of the involved functionals, introduces sufficient conditions
of optimality for (P).

Theorem 3.2 Let (x∗, u∗) ∈ Ω, the constraint functions satisfy the suit-
able Kuhn-Tucker constraint qualification at (x∗, u∗), and the relations (1)-(3)
from Theorem 2.1 are satisfied for t ∈ [a, b], except at discontinuities. More-
over, we consider γLKL + γUKU is (q, w) − π1-pseudoinvex at (x∗, u∗) with
respect to τ, ν and σ, and G(x, u) :=

∫ b

a

∑m
j=1 ζjgj(t, x, u)dt and H(x, u) :=∫ b

a

∑n
i=1 λi[hi(t, x, u)−ẋi]dt are (q, w)−π2-quasiinvex and (q, w)−π3-quasiinvex

at (x∗, u∗) with respect to τ, ν and σ, respectively. If π1 + π2 + π3 ≥ 0, then
(x∗, u∗) is an LU-optimal solution to the problem (P).
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Proof. Consider (x∗, u∗) is not an LU-optimal solution of (P) and, conse-
quently, there exists (x0, u0) ∈ Ω such that

K (x0, u0) <LU K (x∗, u∗) ,

that is,{
KL(x0, u0) < KL(x∗, u∗)
KU (x0, u0) < KU (x∗, u∗),

or
{

KL(x0, u0) ≤ KL(x∗, u∗)
KU (x0, u0) < KU (x∗, u∗),

or
{

KL (x0, u0) < KL (x∗, u∗)
KU (x0, u0) ≤ KU (x∗, u∗) .

Since γL > 0 and γU > 0, from the above inequalities, we have

γLKL (x0, u0) + γUKU (x0, u0) < γLKL (x∗, u∗) + γUKU (x∗, u∗) ,

or, equivalently,∫ b

a

[γLfL (t, x0, u0)+γUfU (t, x0, u0)]dt <

∫ b

a

[γLfL (t, x∗, u∗)+γUfU (t, x∗, u∗)]dt.

Since we have w > 0, by using the properties of exponential functions, it follows

1

w

[
ew{(γ

LKL(x0,u0)+γUKU (x0,u0))−(γLKL(x∗,u∗)+γUKU (x∗,u∗))} − 1
]
< 0,

which together with the assumption that γLKL+γUKU is (q, w)−π1-pseudoinvex
at (x∗, u∗), with respect to τ, ν and σ, gives

1

q
γL

∫ b

a

fL
x (t, x

∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q
γL

∫ b

a

fL
u (t, x

∗, u∗)
(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt+ π1∥σ(x0, u0, x

∗, u∗)∥2

+
1

q
γU

∫ b

a

fU
x (t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q
γU

∫ b

a

fU
u (t, x∗, u∗)

(
eqν(x0,u0,x

∗,u∗) − 1u

)
dt < 0. (7)

Next, by considering the feasibility property of (x0, u0) to (P), we get

gj (t, x0, u0) ≤ 0, t ∈ [a, b], j = 1, 2, . . . ,m.

But, we have ζj ≥ 0, j = 1, 2, . . . ,m, and the relation (3) and the above inequal-
ity yield

m∑
j=1

ζjgj (t, x0, u0) ≤
m∑
j=1

ζjgj (t, x
∗, u∗) , t ∈ [a, b],
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which involves∫ b

a

m∑
j=1

ζjgj (t, x0, u0) dt ≤
∫ b

a

m∑
j=1

ζjgj (t, x
∗, u∗) dt, t ∈ [a, b],

Since we have w > 0, by using the properties associated with exponential func-
tions, we get

1

w

[
ew{

∫ b
a

∑m
j=1 ζjgj(t,x0,u0)dt−

∫ b
a

∑m
j=1 ζjgj(t,x

∗,u∗)dt} − 1
]
≤ 0,

which together with the assumption that G(x, u) is (q, w) − π2-quasiinvex at
(x∗, u∗), with respect to τ, ν and σ, involves

1

q

∫ b

a

m∑
j=1

ζj
∂gj
∂x

(t, x∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

m∑
j=1

ζj
∂gj
∂u

(t, x∗, u∗)
(
eqτ(x0,u0,x

∗,u∗) − 1u

)
dt+π2 ∥σ (x0, u0, x

∗, u∗)∥2 ≤ 0.

(8)
In a similar way, by considering the assumption that H(x, u) is (q, w) − π3-
quasiinvex at (x∗, u∗), with respect to τ, ν and σ, we get

1

q

∫ b

a

n∑
i=1

λi
∂(hi − ẋi)

∂x
(t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1x

)
dt

+
1

q

∫ b

a

n∑
i=1

λi
∂(hi − ẋi)

∂u
(t, x∗, u∗)

(
eqτ(x0,u0,x

∗,u∗) − 1u

)
dt

+π3 ∥σ (x0, u0, x
∗, u∗)∥2 ≤ 0. (9)

On adding (7), (8) and (9), from the hypothesis that (π1 + π2 + π3) ≥ 0, and 
by considering (1), we get a contradiction. This completes the proof. □

4 Conclusions
In this paper, some generalizations of the invexity notion and their applications 
to optimization and control theory have been established. Concretely, motivated 
by the continued research in this area, we have investigated the solutions for 
a class of optimal control problems under interval-valued generalized invexity 
assumptions for the involved functionals. Also, the research will continue and 
various duality relations between the associated dual problems and the primal 
optimization problem will be found.
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Abstract 

The present work addresses new classes of variational problems involving curvilinear integral-type functionals 
and equality constraints, developing a novel framework based on gradient-type variations. The main results 
highlight the nonhomogeneous Euler-Lagrange-type partial differential equations. Compared to classical variations, 
in this context we are led to controlled right-hand member equations, creating a novel perspective in the field of 
variational calculus. In addition, several illustrative biomedical applications are provided to validate the theoretical 
outcomes. In relation to the functionals of curvilinear integral type, a dynamical model for tumor growth is 
proposed, in which we investigate how a cancer cell should optimally distribute its available resources between 
metabolism and growth so that the applied therapy intervention achieves significant efficacy. 

Key words: constrained variational problems; curvilinear integral functionals; gradient-type variations; 
non-homogeneous Euler-Lagrange equations; tumor growth model. 

1. INTRODUCTION
Optimization problems are widely used to model different real-life applications from many areas of
science and engineering, such as classification algorithms, decision theory, game theory, mechanics
or the abstraction of medical processes (see, for example, brain electrical activity). The accuracy of
the designed model is influenced by the proposed architecture to represent data (mathematical
statements), so that, in numerous cases, the computational results cannot include all details of the
original problem. To overcome this limitation, functional optimization theory has been extended. In
this way, gradient-type variations and needle-type variations have been introduced, becoming a useful
mathematical tool to investigate several variational or control problems.

2. CONTENT
Consider the complete integrable Lagrange 1-form of 𝐶𝐶2-class

𝐺𝐺𝜈𝜈�ℎ(𝜔𝜔),ℎ𝛾𝛾(𝜔𝜔),𝜔𝜔�𝑑𝑑𝜔𝜔𝜈𝜈 

≔𝐺𝐺1�ℎ(𝜔𝜔),ℎ𝛾𝛾(𝜔𝜔),𝜔𝜔�𝑑𝑑𝜔𝜔1 + ⋯+ 𝐺𝐺𝑚𝑚�ℎ(𝜔𝜔),ℎ𝛾𝛾(𝜔𝜔),𝜔𝜔�𝑑𝑑𝜔𝜔𝑚𝑚, 

where 𝜔𝜔 = (𝜔𝜔𝛾𝛾) ∈ 𝛺𝛺0,𝜔𝜔0 ⊂ ℝ+
𝑚𝑚,  ℎ = (ℎ𝜄𝜄):𝛺𝛺0,𝜔𝜔0 → ℝ𝑛𝑛, ℎ𝛾𝛾(𝜔𝜔) : = ∂ℎ

∂𝜔𝜔𝛾𝛾 (𝜔𝜔),  𝛾𝛾 ∈ {1, … ,𝑚𝑚}, and 
𝛺𝛺0,𝜔𝜔0 represents a 𝑚𝑚-dimensional interval from ℝ+

𝑚𝑚. Additionally, let 𝛤𝛤0,𝜔𝜔0 ⊂ 𝛺𝛺0,𝜔𝜔0 be an arbitrary 
curve (piecewise differentiable) linking the end-points 0 = (0, … ,0) and 𝜔𝜔0 = (𝜔𝜔0

1, … ,𝜔𝜔0
𝑚𝑚) in ℝ+

𝑚𝑚. 

Further, we state a new optimization problem. 

Multi-dimensional extremization model. Let us assume there exists a Lagrangean 𝐺𝐺 such that 
𝐷𝐷𝜈𝜈𝐺𝐺 = 𝐺𝐺𝜈𝜈, find a 𝑚𝑚-sheet ℎ∗:𝛺𝛺0,𝜔𝜔0 → ℝ𝑛𝑛 that minimizes the path-independent curvilinear integral 
functional 
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between all 𝐶𝐶2-class functions satisfying 

ℎ(0) = ℎ0, ℎ(𝜔𝜔0) = ℎ𝜔𝜔0 , 

and the following PDE constraints 

𝑓𝑓𝜈𝜈
𝜙𝜙�ℎ(𝜔𝜔),ℎ𝛾𝛾(𝜔𝜔),𝜔𝜔� = 0, 𝜙𝜙 = 1,𝑤𝑤,  𝑤𝑤 ≤ 𝑛𝑛,  𝜈𝜈 = 1,𝑚𝑚 

by considering gradient variations satisfying boundary and complete integrability hypotheses. 

Theorem 3.1. If �ℎ∗(⋅),𝑝𝑝∗(⋅)� minimizes (𝑃𝑃2′) and the 1-form 

 �𝜕𝜕𝐺𝐺𝜈𝜈
𝜕𝜕ℎ𝜄𝜄

𝛿𝛿𝜎𝜎
𝛾𝛾 − 𝐷𝐷𝜎𝜎

𝜕𝜕𝐺𝐺𝜈𝜈
𝜕𝜕ℎ𝛾𝛾𝜄𝜄

� 𝑑𝑑𝜔𝜔𝜎𝜎 

 is a pullback for the 1-form 𝑑𝑑�𝐵𝐵𝜈𝜈𝜈𝜈
𝛾𝛾 �, then �ℎ∗(⋅),𝑝𝑝∗(⋅)� is a solution of 

 𝜕𝜕𝐺𝐺𝜈𝜈
𝜕𝜕ℎ𝜄𝜄

− 𝐷𝐷𝛾𝛾
𝜕𝜕𝐺𝐺𝜈𝜈
𝜕𝜕ℎ𝛾𝛾𝜄𝜄

= 𝑐𝑐𝜈𝜈𝜈𝜈, 𝜄𝜄 = 1,𝑛𝑛, 

 𝜕𝜕𝐺𝐺𝜈𝜈
𝜕𝜕𝑝𝑝𝜙𝜙

− 𝐷𝐷𝛾𝛾
𝜕𝜕𝐺𝐺𝜈𝜈
𝜕𝜕𝑝𝑝𝜙𝜙,𝛾𝛾

= 0, 𝜙𝜙 = 1,𝑤𝑤, 𝜈𝜈, 𝛾𝛾 = 1,𝑚𝑚, 

(non-homogeneous Euler-Lagrange PDEs) where 𝑐𝑐𝜈𝜈𝜈𝜈 are real constants. and 𝜈𝜈, 𝜇𝜇 = 1,𝑚𝑚, and 

 𝐷𝐷𝛾𝛾 : = 𝜕𝜕
𝜕𝜕𝜔𝜔𝛾𝛾 + 𝜕𝜕

𝜕𝜕ℎ𝜄𝜄
� 𝜕𝜕ℎ𝜄𝜄

𝜕𝜕𝜔𝜔𝜋𝜋𝜋𝜋� + 𝜕𝜕
𝜕𝜕ℎ𝛾𝛾𝜄𝜄

�𝜕𝜕ℎ𝛾𝛾
𝜄𝜄

𝜕𝜕𝜔𝜔𝛾𝛾� , 𝛾𝛾 = 1,𝑚𝑚, 

is the operator of total derivative. 

Illustrative application. The formulation of an optimal dynamical model for tumor growth begins with 
the following question: How should a cancer cell optimally allocate available resources (oxygen and 
nutrients) between metabolism (immediate energy consumption) and growth (leading to the release 
of metastatic cells) for a given therapy to have a significant effect? To address this problem, we 
consider a two-dimensional dynamical system that describes the temporal evolution of the effects of 
tumor growth. We assume 𝜔𝜔 = (𝜔𝜔1,𝜔𝜔2) refers to an observer time and an intrinsic evolution, 
respectively. In addition, we introduce the following functions: K(𝜔𝜔), seen as a dynamical variable 
proportional to the amount of neovascularization. The tumor is supposed to have a large number of 
cells so that neovascularisation becomes the primary factor governing oxygen and nutrient 
availability.  L(𝜔𝜔) is regarded as labour force and T(𝜔𝜔) is chemotherapy treatment concentration, 
where T1(𝜔𝜔) is associated with the concentration of anticancer agent in the central compartment 
(blood), while T2(𝜔𝜔) is linked to the concentration of anticancer agent in the peripheral compartment 
(tumoral tissue). 

3. CONCLUSIONS  
 
The proposed framework, formulated in accordance with the considered class of perturbed functions 
governed by gradient-type variations, highlights the right-hand controlled Euler-Lagrange systems, 
which are very useful in modelling various applications that involve electromagnetic fields with 
greater accuracy. In this regard, future directions should consider studying biomedical signals as 
optimal control problems. Fetal electrocardiography, or the inverse problem of 
electroencephalography, represents a milestone in applying the foregoing theory.  
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Abstract
This research explores the practical use of piecewise differential equations, a versatile mathematical framework 
designed to model systems that evolve over distinct time intervals. The work primarily focuses on hybrid horizontal–
vertical transmission models, with a particular application to the dynamics of HIV infection. By considering both 
horizontal (person-to-person) and vertical (mother-to-child) transmission routes, the study provides deeper insight into 
the behavior of infection spread when an infected newborn enters a population. In addition to establishing the global 
existence and uniqueness of solutions for piecewise systems, the investigation addresses the mathematical conditions 
ensuring their validity. Furthermore, the study explores cases where fractional derivatives are incorporated, revealing 
complex dynamical patterns that arise from such extensions. To support this theoretical framework, a parameterized 
method is developed for solving piecewise differential equations describing vertical and horizontal transmissions. 
Finally, a series of numerical simulations is conducted to demonstrate how these models behave under various 
conditions, offering a comprehensive view of the dynamics and illustrating the effectiveness of the piecewise modeling 
approach in capturing hybrid transmission mechanisms. 
Keywords:fractional calculus; piecewise differential equations; HIV infection; vertical; horizontal 

1. INTRODUCTION
The transmission of viruses occurs mainly through two pathways: horizontal and vertical. 
Horizontal transmission refers to the spread of infection among individuals within the same 
generation, while vertical transmission occurs from mother to child during pregnancy, childbirth, or 
breastfeeding. Several viruses, including HIV, Hepatitis B, Zika, dengue, and syphilis, can be 
transmitted through both routes. Asymptomatic carriers play an important role in the spread of 
infections such as HIV and Hepatitis B. Environmental factors, host susceptibility, and immunity 
also influence the simultaneous presence of multiple infections. Recent research has shown that 
COVID-19 may also involve vertical transmission, as newborns of infected mothers have tested 
positive for SARS-CoV-2, suggesting the coexistence of horizontal and vertical spread. Several 
mathematical models have been proposed to study these transmission mechanisms. For example, 
fractional-order models have been used to analyze Hepatitis B, Zika, HIV, and dengue dynamics, 
highlighting the contribution of asymptomatic carriers and vertical transmission to disease 
persistence. However, existing models often consider either horizontal or vertical transmission 
separately. To address this limitation, the present study introduces a piecewise differential equation 
model that integrates vertical transmission into a population already experiencing horizontal 
transmission. The model incorporates fractional and fractal–fractional derivatives, solved using a 
generalized parameterized method, and establishes existence and uniqueness conditions for its 
solutions. This approach provides a deeper understanding of hybrid transmission dynamics in 
infectious diseases.
2. CONTENT
When a disease first emerges within a population, it is not necessarily capable of spreading through 
both horizontal and vertical transmission. For instance, during the early stages of the COVID-19 
outbreak, it was initially believed that transmission occurred only horizontally. However, as the 
pandemic evolved, evidence revealed that vertical transmission was also possible. In light of this, 
the present section focuses on the situation in which vertical transmission appears after a period of 
purely horizontal spread. To represent this process mathematically, we construct a model based on 
the concept of piecewise differential equations. This framework allows us to describe how vertical
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transmission becomes active following horizontal spread. For this purpose, we adapt and extend the 
mathematical model developed by Yusuf et al. [20], which captures both vertical and horizontal 
transmission dynamics of HIV infection over time. 
To fulfill our objective, the model proposed in [20] is reformulated using the framework of 
piecewise differential equations. During the first time interval, 0 ≤ t ≤ t₀, the population consists of 
susceptible adults, HIV-infected adults, and newborns, but there are no HIV-infected newborns 
present. In the subsequent interval, t₀ ≤ t ≤ T, the class of HIV-infected newborns is introduced into 
the population, reflecting the onset of vertical transmission alongside the pre-existing horizontal 
transmission dynamics. 

3. CONCLUSIONS

In existing models addressing horizontal–vertical HIV transmission, an increase in the adult 
population often results in a rise in the number of susceptible newborns, which in turn reduces the 
proportion of susceptible adults. While several studies have examined horizontal, vertical, and 
combined transmission routes, none have specifically considered the case where vertical 
transmission emerges later, through the introduction of an infected newborn into a population 
already experiencing horizontal transmission. The present study investigates this situation using an 
innovative framework based on piecewise differential equations to analyze the resulting epidemic 
dynamics. We establish the existence and uniqueness of solutions to the proposed model and design 
a numerical scheme founded on parameterized integer–fractional derivatives to solve it. Numerical 
simulations are then performed to assess how the onset of vertical transmission affects the overall 
behavior of the system in a population previously governed by horizontal transmission. 

For 0 ≤ t ≤ t₀: 
⎧ dS(t)/dt = Π − λS − (δ₁ + μ)S 
⎪ dI(t)/dt = λS − (α₁ + δ₂ + δ₃ + μ)I 
⎩ dC(t)/dt = δ₁S + δ₂I − μC 

For t₀ ≤ t ≤ T: 
⎧ dS(t)/dt = Π − λS − (δ₁ + μ)S 
⎪ dI(t)/dt = λS − (α₁ + δ₂ + δ₃ + μ)I 
⎪ dC(t)/dt = δ₁S + δ₂I − μC 
⎩ dI_c(t)/dt = δ₃I − (μ + α₂)I_c 
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Abstract 

The physical interpretation of scaling spatial dimensions, from 3D Euclidean space (SO(3)) to 
4D spaces (SO(4)), relies fundamentally on the mathematical framework of coordinate 
representations and matrix transformations. Our goal is to unpack these transformations to 
gain a precise understanding of what it means to computationally handle a fourth spatial 
dimension. The key algebraic breakthrough enabling this extension is the linearization of 
translation—an inherently non-linear operation—through the use of homogeneous coordinates (N to 
N+1). This core affine geometry technique allows complex affine transformations (translation, 
rotation, scaling) to be composed and applied efficiently with a single matrix multiplication, 
forming the foundation of computer graphics and physical simulation. In 4D, geometric 
complexity shifts from rotation around an axis (3D) to rotation around a plane, producing 
double rotations governed by the SO(4) group. Our approach will emphasize practical software 
implementations to illustrate these 4x4 matrix transformations, showing how they can be 
applied to solve real-world problems in advanced robotic navigation, simulation optimization, 
and multi-dimensional data visualization. We will convert the abstract grasp of dimensional scaling 
into a computational toolkit applicable in engineering and computer science. 

Key words: Dimensional scaling; Affine transformations; Homogeneous coordinates; Matrix multiplication; SO(4) 
group; Computational methods. 

1. INTRODUCTION
The physical interpretation of scaling spatial dimensions, from 3D Euclidean space (SO(3)) to 4D
spaces (SO(4)), relies fundamentally on the mathematical framework of coordinate representations
and matrix transformations. Our goal is to unpack these transformations to gain a precise
understanding of what it means to computationally handle a fourth spatial dimension.

2. CONTENT

The key algebraic breakthrough that enables efficient extension from 3D to 4D is the linearization of 
translation—an inherently non-linear operation—through the use of homogeneous coordinates (N to 
N+1). This core technique from affine geometry allows complex sets of affine transformations 
(translation, rotation, scaling) to be composed and applied efficiently with a single matrix 
multiplication. It forms the foundation of all computer graphics software, geometric modelling, and 
physical simulation applications. 
In higher-dimensional spaces (4D), geometric complexity shifts dramatically. Rotations no longer 
occur around an axis (as in 3D) but around a plane, producing double rotations governed by the SO(4) 
group. This behaviour is handled through algebraic geometry and the concept of bivectors. 

3. CONCLUSIONS
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Our approach will emphasize practical software implementations to illustrate these 4x4 matrix 
transformations. We will delve into the underlying intuition behind these matrices and show how they 
can be applied to solve real-world problems, such as: 
 
1. Advanced Robotic Navigation: Modelling intricate motion and orientation. 
 
2. Simulation Optimization: Developing more compact data structures for storing system states 
(position and orientation) in real-time applications. 
 
3. Multi-Dimensional Data Visualization: Efficiently designing datasets involving four spatial 
variables. 
 
In this way, we will convert the abstract grasp of dimensional scaling into a toolkit of computational 
methods directly applicable in engineering and computer science. 
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Abstact: Our research proposes the development and evaluation of a framework for incremental learning in 
artificial intelligence agents operating on sub-millimeter implantable neural devices. The study integrates energy 
and communication channel simulations with TinyML optimization techniques such as quantization, pruning, and 
knowledge distillation. To ensure long term adaptability under strict power and safety constraints, we introduce a 
federated update protocol specifically designed for ultra-low power communication environments. The framework 
aims to demonstrate that clinically relevant detection tasks, such as early identification of epileptic seizures, can be 
achieved with minimal energy expenditure while maintaining data privacy and reliability. Publicly available EEG 
and ECoG datasets will be used for simulation and validation. Through this approach, the work contributes to 
advancing embedded AI toward bio-compatible, energy efficient], and continuously learning neural implants, 
bridging the gap between intelligent computation and next generation brain computer interfaces. 

Key words: Incremental Learning, TinyML Optimization, Federated Update Protocols, Neural Implants, Energy 
Constrained AI Agents, Brain Computer Interfaces (BC1), Biomedial Signal Processing 

1. INTRODUCTION
              Recent breakthroughs in brain computer interfaces (BCIs) have transformed neural implants from 
experimental prototypes into functional clinical systems. Companies such as Neuralink have already 
demonstrated bidirectional brain communication in human subjects, while over 150,000 individuals 
worldwide currently use implanted neurostimulators or neural monitoring devices for medical purposes. 
These systems continuously generate vast amounts of high-resolution neural data, which remain largely 
underutilized outside proprietary environments. Leveraging this existing data through open, federated, and 
privacy preserving frameworks could accelerate progress in personalized neuro AI and adaptive 
therapeutic models. This research builds on that vision by proposing a framework for incremental learning 
in sub millimeter AI enabled neural implants, aiming to minimize energy consumption while maintaining 
clinical reliability and data confidentiality. 
2. CONTENT

The rapid evolution of neurotechnology and nanoelectronics is reshaping the interface 
between biological and artificial intelligence. Recent advances in brain computer interfaces (BCIs) 
such as Neuralink have demonstrated that neural implants can support real time signal decoding, 
adaptive stimulation, and bidirectional communication between biological neurons and artificial 
agents. Figure 1 illustrates the proposed system architecture, where an AI embedded nanochip 
processes neural signals locally using TinyML inference and transmits compressed updates to an 
external medical node for aggregation and analysis. This design supports a federated learning 
feedback loop, enabling the implant to adapt continuously while maintaining low energy 
consumption and data privacy. 
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At the physical level, bio-compatible nanoelectrode arrays form the substrate of these learning 
systems. As shown in Figure 3, materials such as PEDOT and IrOx exhibit distinct impedance 
profiles (|Z| ranging from 20–100 kΩ), allowing stable long-term signal acquisition and fine-tuned 
current feedback. Each microelectrode measuring approximately 14×24 μm acts as a Data Node, 
capable of local adaptation through electrical feedback, forming a distributed physical learning 
network. Despite the growing presence of neural implants over 150,000 patients currently rely on 
implanted neurostimulators and neural monitoring devices the high-resolution neural data they 
produce remains largely siloed. Leveraging these datasets through federated, privacy preserving 
learning frameworks can accelerate the emergence of self-learning neural implants, capable of 
personalizing their behavior to each patient’s neural patterns. From an economic standpoint, the 
convergence of AI miniaturization and neural hardware innovation is driving an unprecedented 
expansion in the nanochip sector. As projected in Figure 3, the global nanochip market is expected 
to exceed 1.5–2 trillion USD by 2040, driven by bio-integrated computing and embedded 
intelligence. Together, these developments mark the transition from passive, recording based 
implants to autonomous nano intelligent systems, where biocompatible nanochips act as active 
learning agents bridging living tissue and artificial cognition. 

3. CONCLUSIONS
This work presents a framework for incremental learning in AI embedded neural implants, 

combining TinyML optimization and federated feedback protocols to enable adaptive intelligence 
under strict energy and safety constraints. The proposed architecture (Fig. 1) allows nanochips to 
perform localized inference and receive model updates through ultra-low-power communication 
links, achieving continuous adaptation without compromising privacy. The integration of bio 
compatible electrode materials such as PEDOT and IrOx (Fig. 2) demonstrates the feasibility of 
stable, low impedance interfaces capable of both neural recording and adaptive feedback. Each 
electrode operates as a Data Node, contributing to distributed, self-adjusting learning. Given the rapid 
expansion of the nanochip market (Fig. 3) and the growing population of implanted patients, 
leveraging existing neural datasets within secure, federated systems could accelerate the development 
of self-learning neural interfaces that evolve alongside human neural activity and redefine the 
boundary between biology and computation. 

4. REFERENCES
[1] E. R. Musk and the Neuralink team, “An Integrated Brain-Machine Interface Platform With Thousands of Channels,”
Journal of Medical Internet Research, vol. 21, no. 10, e16194, 31 Oct. 2019. doi:10.2196/16194. PMCID:PMC6914248.
[2] P. M. Parikh and A. Venniyoor, “Neuralink and Brain–Computer Interface—Exciting Times for Artificial
Intelligence,” South Asian Journal of Cancer, vol. 13, no. 1, pp.63-65, 2024. DOI:10.1055/s-0043-1774729.
PMCID:PMC11076062.
[3] D. Broom, “Microchips – their past, present and future,” World Economic Forum, Jan. 2025.

Figure 1. Prototype simulation Figure 2. Novel polymer probes [2]. 
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Abstract 

We introduce a new class of finite groups, called weak almost monomial, which generalize two 
different notions of "almost monomial" groups, and we prove it is closed under taking factor groups and direct 
products. 

Let  𝐾𝐾 / Q be a finite Galois extension with a weak almost monomial Galois group G and 𝑠𝑠 0 ∈ 𝐶𝐶  ∖ 
{1}. We prove that Artin conjecture's is true at 𝑠𝑠 0 if and only if the monoid of holomorphic Artin L-functions 
at 𝑠𝑠 0 is factorial. Also, we show that if 𝑠𝑠 0 is a simple zero for some Artin L-function associated to an 
irreducible character of G and it is not a zero for any other L-function associated to an irreducible character, 
then Artin conjecture's is true at 𝑠𝑠 0. 

Key words: Finite group, Almost monomial, Galois extension, Artin L-function, Artin’s conjecture. 

1. INTRODUCTION

A finite group G is called monomial, if every complex irreducible character χ of G is monomial, that 
is, it induced by a linear character λ of a subgroup H of G.  

Let 𝐾𝐾 /𝑄𝑄  be a Galois extension. For a character of the Galois group G=Gal(K/Q), Artin associated 
a L-function, denoted by 𝐿𝐿 (𝑠𝑠 , χ), and he conjectured that 𝐿𝐿 (𝑠𝑠 , 𝜒𝜒 ) is holomorphic on C\{1}. 
Artin proved that his conjecture holds for monomial groups G. However, the class of monomial 
groups is very restrictive, thus several generalizations were considered in literature:

A finite group G is called almost monomial, in the sense of Nicolae [4] (NAM), if for every distinct 
complex irreducible characters χ and χ′of  G, there exist a subgroup H of G and a linear character 
character λ of H such that the induced character λ  contains χ but not χ′. 

A finite group G is called almost monomial, in the sense of Booker [1] (BAM), if for every 
irreducible characters 𝜒𝜒  of G, if χ = ψ + ϕ for some virtual characters ψ and ϕ, such that ⟨ψ, σ⟩ ≥ 0 
and ⟨ϕ, σ⟩ ≥ 0 for all monomial characters 𝜎𝜎 , then either 𝜓𝜓 =0, either 𝜙𝜙 =0. 

In our paper, we introduce a further generalization: We say that a finite group $G$ is weak almost 
monomial (WAM), if for every distinct complex irreducible characters 𝜒𝜒  and 𝜒𝜒 ′of  G, there exist a 
subgroup H of G and a linear character character 𝜆𝜆  of H such that ⟨χ, λ ⟩ > ⟨χ′, λ ⟩. 

It is easy to see that if G is almost monomial (in the sense of Nicolae or in the sense of Booker), then 
G is weak almost monomial. However, there are examples of groups which are weak almost 
monomial, but are not almost monomial in the sense of Nicolae. 

This presentation is based on our preprint [2]. 
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2. CONTENT 
 
Our main results are the following: 
 
Theorem 1. Let 𝑁𝑁 be a normal subgroup of the WAM-group G. Then G/N is a WAM. 
 
Theorem 2. Let G, G’ be two finite groups. Then 𝐺𝐺 × 𝐺𝐺’ is WAM if and only if G and G’ are WAM. 
 
Let s0 ∈ C ∖ {1}. We denote by Hol(s0), the monoid of holomorphic L-functions at  s0.  
 
Theorem 3. Let K/Q is a finite Galois extension with the Galois group G, which is WAM. Then 
Artin’s conjecture holds, if and only if the monoid Hol(s0) is factorial. 
 
Theorem 4. Let K/Q is a finite Galois extension with the Galois group G, which is WAM. If s0 is a 
simple zero for some Artin L-function associated to an irreducible character of G and it is not a zero 
for any other L-function associated to an irreducible character, then Artin conjecture's is true at s0. 

3. CONCLUSIONS 
 
We introduced and studied a new class of finite groups, called weak almost monomial, which 
generalizes the class of monomial groups. If K/Q is a finite Galois extension with the Galois group G 
weak almost monomial, we proved that Artin conjecture's is true if and only if the monoid of holomorphic 
Artin L-functions is factorial. Also, we proved that that if s_0 is a simple zero for some Artin L-function 
associated to an irreducible character of G and it is not a zero for any other L-function associated to an 
irreducible character, then Artin conjecture's is true at s_0. Thus, we extended some previous results from [3] 
and [4], regarding almost monomial groups (in the sense of Nicolae). 
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REPRESENTATIONS OF THE BRAID GROUP AND THEIR

EXTENSIONS TO THE SINGULAR BRAID MONOID

MOHAMAD N. NASSER

Abstract. Let t be indeterminate and let ρ : Bn → GLm(Z[t±1]) be a k-local

representation of the braid group Bn, where k = m− n+ 2. We consider two

types of extensions of ρ to the singular braid monoid SMn. The first type
is called the k-local extension, which is a new concept defined in this paper.

The second type is called the Φ-type extension, which is given by Bardakov,

Chbili, and Kozlovskaya. In order to obtain a relation between these two
types of extensions, we consider two homogeneous 2-local representations of

Bn, namely ρB : Bn → GLn(Z[t±1]) and ρS : Bn → GLn(Z[t±1]), and a

homogeneous 3-local representation of Bn, namely ρF : Bn → GLn+1(Z[t±1]).
We study the relation between the two types of extensions to SMn of these

three representations of Bn. In fact, we prove that every homogeneous 2-local

extension of ρB is also a Φ-type extension for all n ≥ 2; which is not the case
for ρS . Also, we prove that every homogeneous 3-local extension of ρF is a

Φ-type extension for all n ≥ 3. In addition, we study, in the case n = 2, the

faithfulness of the complex specialization of all 2-local extensions of ρB and
ρS .

1. Introduction

The braid group on n strings, Bn, is generated by the Artin generators σ1, . . . , σn−1.
The singular braid monoid SMn extends Bn by including additional generators
τ1, . . . , τn−1 corresponding to singular crossings. The structure of SMn was first
introduced independently by J. Baez and J. Birman, and later Fenn, Keyman, and
Rourke proved that SMn embeds into a group SBn, called the singular braid group.

A central topic of interest in Representation Theory is the study of linear represen-
tations of Bn, SMn, and SBn. One of the most notable representations of Bn is the
Burau representation, known to be faithful for n ≤ 3, unfaithful for n ≥ 5, while
the case n = 4 remains unresolved. Dasbach and Gemein investigated extensions
of the Burau representation to SM3 and studied their faithfulness.

Another important class of representations are the local representations. Mikhalchishina
studied local and homogeneous local representations of Bn, their connection with
the Burau representation, and their irreducibility properties were further examined.

Key words and phrases. Braid Group, Singular Braid Monoid, Group Representations, Burau
Representation, Standard Representation, Faithfulness.
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2 MOHAMAD N. NASSER

In analogy, the present paper introduces the notion of k-local extensions of braid
group representations to the singular braid monoid SMn. These are extensions of
k-local representations of Bn preserving a similar block structure.

Another family of extensions, known as Φ-type extensions, were defined by Bar-
dakov, Chbili, and Kozlovskaya. Given a representation ρ : Bn → Gn and a field
K, they defined

Φa,b,c : SMn −→ K[Gn], Φa,b,c(σ
±1
i ) = ρ(σ±1

i ), Φa,b,c(τi) = aρ(σi)+bρ(σ−1
i )+ce,

where a, b, c ∈ K and e is the identity in Gn. This provides a linear extension
of ρ to SMn. A special case, with a = 1, b = −1, and c = 0, yields the Birman
representation, proved injective by L. Paris. Faithfulness of Φa,b,c in specific settings
was investigated by M. Nasser.

The main objective of this work is to explore the relationship between k-local exten-
sions and Φ-type extensions of k-local representations of Bn to SMn. Specifically,
it aims to answer:

If ρ is a k-local representation of Bn, what is the relation between
k-local extensions and Φ-type extensions of ρ to SMn?

The study focuses on three homogeneous local representations of Bn:

• The Burau representation ρB (homogeneous 2-local),
• The standard representation ρS (homogeneous 2-local),
• The F -representation ρF (homogeneous 3-local).

These cases are chosen to compare behaviors for different degrees k and to highlight
that even representations of the same degree may yield different types of extensions.

Conclusion. This article establishes foundational links between k-local and Φ-type
extensions of braid group representations to the singular braid monoid. It shows
that for several fundamental homogeneous local representations, these two types of
extensions coincide, offering insight into the structure and potential faithfulness of
such extensions.

Mohamad N. Nasser, Department of Mathematics and Computer Science, Beirut Arab
University, P.O. Box 11-5020, Beirut, Lebanon

Email address: m.nasser@bau.edu.lb
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ON THE CONTROLLABILITY OF POSITIVE FRACTIONAL 2D 
CONTINUOUS-TIME LINEAR SYSTEMS 
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Mostaganem, Algeria
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Abstract 

In this paper, we investigate the controllability of positive fractional 2D continuous-time linear systems described 
by Fornasini-Marchesini Model. Sufficient conditions for controllability using Gramians controllability are 
established. Necessary and sufficient conditions for the controllability of the considered systems, based on the 
matrices of the systems, are also provided. Additionally, the paper presents conditions required for the existence 
of a solution to the minimum energy control problem, along with a systematic approach for computing an input that 
minimizes the specified performance index. The effectiveness of this procedure is demonstrated through the 
application of a numerical example. 

Keywords: 2D Fornasini-marchesini model; Controllability; Minimum energy control; Gramien Controllability. 

1. INTRODUCTION
        Two-dimensional systems hold a pivotal role in modeling and controlling a wide array of 
phenomena spanning the physical, biological, and more. Within this domain, we find prominent 
models like the Roesser model [1] and the FernasiniMarchesini model [2], frequently harnessed to 
unravel complex dynamics. 
Controllability stands as a paramount concept in control theory, serving as a linchpin for addressing 
diverse engineering challenges. This concept plays a pivotal role in mechanical systems, electrical 
circuits, and biological systems, enabling them to transition from any initial state to a desired final 
state within their state space through appropriate control inputs. Conversely, the minimum energy 
control, another facet of controllability, focuses on optimizing control inputs to facilitate seamless 
transitions between states. Researchers have extensively explored the controllability and minimum 
energy control aspects in various system types, including 1D fractional linear systems, 1D positive 
fractional systems [3,4], 2D continuous linear systems , 2D continuous-discrete time linear systems 
, positive 2D continuous-discrete systems, and fractional 2D discrete-time linear systems. 

2. CONTENT
Consider the following fractional 2D continuous-time linear system described by the Fornasini-
Marchesini model:

𝐷𝐷𝑡𝑡
𝛼𝛼
1
,
,
𝛽𝛽
𝑡𝑡2 
𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) = 𝐴𝐴0𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) + 𝐴𝐴1𝐷𝐷𝑡𝑡𝛼𝛼1 𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) + 𝐴𝐴2𝐷𝐷𝑡𝑡

𝛽𝛽
2 
𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) + 𝐵𝐵𝐵𝐵(𝑡𝑡1, 𝑡𝑡2)      (1)

where 𝐷𝐷𝑡𝑡
𝛼𝛼
1
,
,
𝛽𝛽
𝑡𝑡2 
𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) the 2D Caputo fractional derivative operators, 0 < α, β < 1, 𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) ∈ Rn is

the state vector, 𝐵𝐵𝐵𝐵(𝑡𝑡1, 𝑡𝑡2) ∈ 𝑅𝑅𝑚𝑚 is the input vector, matrices 𝐴𝐴𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛 for k = 0, 1, 2; B ∈ 𝑅𝑅𝑛𝑛 . 

In this article, we embark on a novel exploration: the study of controllability and minimum energy 
control in positive fractional 2D continuous-time linear systems utilizing the Caputo fractional 
derivative. Building upon the foundations laid for 1D positive fractional linear systems [10], we 
extend our inquiry to encompass positive fractional 2D continuous-time linear systems, particularly 
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those utilized in Fornasini-Marchesini models. Our investigation centers around the Gramian 
controllability approach and yields insights and results tailored to this contex. 

3. CONCLUSIONS
In this work, we establish several key results regarding the controllability and minimum energy
problems for positive fractional 2D continuous linear systems described by the Fornasini-
Marchesini model. We derive sufficient conditions for the controllability of these systems, utilizing
the Gramian approach.
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Similarity in the complex plane 

          Nicolae MUȘUROIA 

National College Gheorghe Șincai, 25 Gheorghe Șincai, Baia Mare, România 

Corresponding author email: musuroianicolae@yahoo.com 

Abstract 
     In this paper we will present some interesting applications related to the characterization of  

triangle similarity  with complex numbers, we will get new  problems and finally we will give an 
extension of the famous Napoleon problem. 

Key words:  geometry problems, complex numbers, similar triangles. 

 Proposition 2.   i)   Triangles ABC  și A B C′ ′ ′ , similarly oriented, are similar if and only: 
c a c a
b a b a

′ ′− −
=

′ ′− −
.

ii) Triangles ABC  și A B C′ ′ ′ , oppositely  oriented, are similar if and only:
c a c a
b a b a

′ ′− − =  ′ ′− − 
. 

Consequence 1.    i) Triangles ABC  și A B C′ ′ ′ , similarly oriented, are similar if and only: 

( ) ( ) ( ) 0a b c b c a c a b′ ′ ′− + − + − = . 

ii) Triangles ABC  și A B C′ ′ ′ , oppositely oriented, are similar if and only:

( ) ( ) ( ) 0a b c b c a c a b′ ′ ′− + − + − = . 

Proposition 3.   Triangles ABC  și A B C′ ′ ′ , similarly oriented, are similar if and only: 

         ( ) ( ) ( )
( )
( )

0, 0, :
c b a b

c b a b

ρε
ρ α π

ρε

= + −∃ > ∃ ∈  ′ ′ ′ ′= + −
,        cos siniε α α= + . 

Proposition 4.   If ABC is a triangle of affixes , ,a b c then the function : ,f →   for which 
triangles ABC and A B C′ ′ ′ are similar, where such that ( ) ( ) ( ), ,a f a b f b c f c′ ′ ′= = =  are  
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( )
( )

1 1

2 2

: , , 0,

: , , 0

f C f z z

f C f z z

α β α

α β α

→ = + ≠

→ = + ≠




. 

Problem 4.  (Generalization of Napoleon’s problem) 

Let ABC be an arbitrary triangle. Show that on its sides we can construct similar 
triangles (and others besides equilateral triangles) and similarly oriented  , ,ABC BCA CAB′ ′ ′  
(all outwards or all three inwards), such that their centers of gravity form a triangle similar to 
the constructed triangles . 
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Abstract 
This study focuses on the stabilization of multidimensional fractional discrete linear systems. A new 
method is proposed for designing control laws that ensure system stability. The approach employs 
gain and feedback matrices to drive the system state toward equilibrium. Several numerical 
examples are presented to demonstrate the validity and performance of the proposed method.
Key words: Multidimensional systems , Rosser model , Fractional systems, Gain matrix , 
Stabilization. 

1. INTRODUCTION

The study of multidimensional (n-D) systems has attracted increasing interest over the last decades. 
These systems propagate their state simultaneously in several independent spatial directions. 
Moreover, multidimensional systems have found applications not only in systems theory but also in 
various engineering fields such as image processing, digital filtering, and RLC circuit analysis. It is 
crucial to ensure that the propagation of the state variable remains bounded over time, which 
implies that the model is stable. 

In control theory, stabilization refers to the design of a controller capable of stabilizing an unstable 
system or maintaining the stability of a stable one. This is typically achieved through a careful 
analysis of the system dynamics and the development of a control law that appropriately adjusts the 
system inputs to achieve the desired behavior. A common approach to solve the stabilization 
problem is to use feedback control, which consists of using the system output as feedback to modify 
its inputs. 

In this work, we study discrete-time fractional multidimensional systems of the Roesser type. The 
proposed solution is presented, and a new approach is introduced to achieve the stabilization of 
these systems based on the gain matrix. Finally, academic examples are provided to illustrate and 
validate the obtained results. 
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2. PRELIMINARIES 
In this work, we focused on multidimensional fractional discrete systems described by the Roesser 
model. We studied the stabilization of these systems by proposing a new method based on the design 
of the gain matrix. The results were validated through several academic examples to demonstrate 
the effectiveness and relevance of the proposed approach. 
 
Below  we  present a Complete formulation of multidimensional  dD  fractional  discrete-time 
systems  described by the Rosser model 

 

 �
∆𝛼𝛼1ℎ1𝑥𝑥𝑖𝑖1+1

1

⋮
∆𝛼𝛼𝛼𝛼ℎ𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑+1

𝑑𝑑
�    = �

𝐴𝐴11 … 𝐴𝐴1𝑑𝑑
𝐴𝐴21 … 𝐴𝐴2𝑑𝑑
𝐴𝐴𝑑𝑑1 … 𝐴𝐴𝑑𝑑𝑑𝑑

� �
𝑥𝑥𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖
1

⋮
𝑥𝑥𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖
𝑑𝑑

� + �
𝐵𝐵1
⋮
𝐵𝐵𝑑𝑑
� 𝑢𝑢𝑖𝑖1,𝑖𝑖2,𝑖𝑖𝑖𝑖                                                                                              

 

𝑦𝑦𝑖𝑖1 ,𝑖𝑖2,𝑖𝑖3,…𝑖𝑖𝑖𝑖 = [𝐶𝐶1 … 𝐶𝐶𝑑𝑑] �
𝑥𝑥𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖
1

⋮
𝑥𝑥𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖
𝑑𝑑

�+𝐷𝐷𝑢𝑢𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖                               

 
𝑖𝑖1, 𝑖𝑖2, … 𝑖𝑖𝑑𝑑  ∈ ℤ+      
Where   

     𝐴𝐴𝑑𝑑  = �
𝐴𝐴11 … 𝐴𝐴1𝑑𝑑
𝐴𝐴21 … 𝐴𝐴2𝑑𝑑
𝐴𝐴𝑑𝑑1 … 𝐴𝐴𝑑𝑑𝑑𝑑

�    ∈ ℝ𝑛𝑛×𝑛𝑛       𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,                       

     𝑥𝑥𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖
𝑗𝑗 ∈ ℝ𝑛𝑛𝑛𝑛     𝑗𝑗 = 1,𝑑𝑑      𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 

                         𝑢𝑢𝑖𝑖1,𝑖𝑖2,…𝑖𝑖𝑖𝑖 ∈ ℝ  𝑚𝑚      𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣                                                                 
      𝑦𝑦𝑖𝑖1 ,𝑖𝑖2,𝑖𝑖3,…𝑖𝑖𝑖𝑖 ∈ ℝ𝑝𝑝                                𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 

𝐵𝐵𝑗𝑗 ∈ ℝ𝑛𝑛𝑛𝑛 ×  𝑚𝑚     ,𝐶𝐶𝑗𝑗 ∈ ℝ𝑝𝑝 ×  𝑛𝑛𝑛𝑛     𝑗𝑗 = 1,𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 ∈ ℝ𝑝𝑝 ×  𝑚𝑚                                                                 
 
 
3. CONCLUSIONS 
 
An analysis of the stabilization of multidimensional fractional discrete-time linear systems 
described by the Roesser model is presented. We conducted an extensive investigation of the 
conditions required to achieve stabilization in discrete-time multivariable fractional Roesser 
models. Our novel approach is based on a gain matrix and state feedback control, validated 
through linear matrix inequalities. The obtained results are demonstrated by several numerical 
examples to illustrate the accuracy and efficiency of the proposed method. 
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Abstract— The rapid increase of big data in different areas 

has made it really necessary to have sophisticated tools for 

analysis that would be able to multidimensional datasets with a 

complex structure and uncover significant patterns. Topological 

Data Analysis (TDA) is one of the techniques that has been 

together with traditional statistics as the main mathematical 

framework for identifying the patterns specifying the nature of 

the data and that often gets overlooked by them. This document 

is a deep dive into TDA's principles, methods and applications 

in big data analytics. Among the concepts discussed are 

simplicial complexes, persistent homology, and Mapper 

algorithms with a focus on their roles in dimensionality 

reduction, pattern recognition and anomaly detection 

techniques. The paper further discusses key and existing TDA 

applications in the real-world scenarios of health care, finance, 

biology, and social networks. Current issues are raised 

concerning, for example, the integration of TDA and machine 

learning models; amongst others, keeping TDA scalable, and 

dealing with data noise. The article concludes by proposing 

future research paths and suggesting TDA's potential to act as a 

conduit in the interdisciplinary area between geometry, 

topology, and data science, ultimately revealing new insights for 

data-driven exploration in the age of big data. 

Keywords— Topological Data Analysis (TDA), Big Data, 

Persistent Homology, Machine Learning, Data Visualization 

I. INTRODUCTION 

 

The vast and rapid data production from different sources like 

social networks, smart devices, healthcare devices, and 

satellite imaging is the main reason for the current day data 

analytics scenario. This trend, which is often referred to as 

Big Data, is marked by its extremely high dimensionality, 

different forms, and huge volumes, which are the major 

reasons for the difficulties that classical statistics and 

machine learning techniques cannot cope with [1]. The 

classical models are not able to catch the intrinsic shapes, 

structure, and multi-scale relationships inside the complex 

datasets [2]. 

As a solution to these challenges, Topological Data Analysis 

(TDA) has risen as a powerful mathematical framework that 

applies concepts from algebraic topology to the extraction of 

qualitative geometric features from data [3]. By treating data 

as point clouds or networks and considering their topological 

invariants—ceasing components, performing loops, and 

creating voids—TDA allows scientists to show the overall 

and non-scale-dependent structural information [4]. Its key 

instrument, persistent homology, measures these 

characteristics over various levels of resolution, condensing 

them into persistence diagrams or barcodes that act as stable, 

compact representations of data structure [5-8]. 

Nevertheless, the application of TDA to Big Data brings up 

significant issues such as scalability, stability, and 

interpretability. The process of creating simplicial complexes 

like Vietoris-Rips or Čech is combinatorial in nature and 

grows with the size of the dataset, leading to an exponential 

increase in computational costs [9, 10]. To solve this 

problem, the development of distributed and parallel 

algorithms has been done, including PixHomology and 

GPU-accelerated frameworks that enhance performance 

while also preserving topological accuracy [11]. 

Approximation techniques based on subsampling and 

stochastic filtration have also been suggested for dealing 

with extremely large or streaming datasets [12]. What is 

more, still the stability of persistence diagrams with regard 

to noise and data variations is a matter of high concern. 

Really small distortions in high-dimensional inputs can in-

noise the topological summaries unless some normalization 

or filtering strategies are properly applied [13]. The other 

open challenge is to work out the integration of TDA-

derived topological signatures into machine learning 

models—this means turning qualitative features into 

quantitative descriptors that will aid the classification, 

clustering, and prediction tasks [14]. 

 

In the backdrop of these advancements, the present study 

intends to offer a wide-ranging review and an analytical 

framework for TDA in Big Data analysis. The research will 
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involve: (i) carrying out a systematic survey of cutting-edge 

algorithms along with their applications; (ii) measuring the 

scalability and performance of the algorithms on large-scale 

datasets; and finally (iii) presenting a hybrid TDA–machine 

learning model that combines interpretability with 

computational efficiency. This research, through the 

connection of topology and data science, is aimed at the 

development of a single framework that would be able to 

reveal hidden structures in the large, complicated data 

environments [15]. 

 

II. BACKGROUND 
 

 

A. Basics of Topology in Data Science 

Topological Data Analysis (TDA) is like a magician that 

unveils the complex structure of data through a simple 

set of tools. The TDA magic is especially powerful when 

applied to data that is often high-dimensional, noisy, and 

heterogeneous. The simplicial complex is the 

computational topology's main character, which is a 

combinatorial structure made of simplices (vertices, 

edges, triangles, tetrahedra, etc.) that depicts 

relationships among data points and expands graphs to 

higher-order connectivity patterns. Homology theory 

gives a simplicial complex a series of algebraic 

invariants, called homology groups, whose dimensions 

are the Betti numbers. The 0th Betti number intuitively 

determines the number of connected components, the 1st 

Betti number determines the number of independent 

loops (cycles), and so on, with higher Betti numbers 

corresponding to higher-dimensional cavities. All these 

invariants together provide quick and easy-to- 

understand summaries of the global shape of data that 

are still usable after many types of deformation [13, 16]. 

B. Persistent Homology and the Mapper Algorithm 

In contrast, the Mapper algorithm takes a different path: 

it does not calculate homology on a nested family of 

complexes but instead, Mapper creates a simplified 

simplicial model (a graph or simplicial complex) that 

represents the main shape of the data through (i) 

selecting a filter function on the data, (ii) covering the 

filter's image with overlapping intervals, (iii) clustering 

the pre-images of these intervals, and (iv) linking the 

clusters that share non-empty intersections. The Mapper 

provides an easy-to-understand topological summary 

that supports particularly well visualization and 

exploratory analysis—hence, it has been employed in 

various scientific disciplines like biology, medicine, 

etc., where interpretable summaries are needed[17]. The 

recent methodological development has propelled 

Mapper to new fronts where probabilistic and 

distribution-aware variants have been created, and its 

stability and statistical properties have been analyzed 

thereby, making it more reliable for large and noisy 

datasets [18].  

C. Relationship between TDA and Machine Learning 

Persistent homology is the core method of extracting 
multi-scale topological signatures from point clouds or 
weighted complexes. The usual constructions are based on 
distance thresholds and consist of Vietoris–Rips and Čech 
filtrations; after that, the matrix-reduction algorithms compute 
the homology classes and their persistence. Algorithmic 
improvements and efficient implementations (e.g. Ripser, 
GUDHI) engaged in the last decade have greatly enhanced the 
practicality of computing the persistence of moderately large 
datasets by the use of sparse representations, cohomology- 
based reductions, and memory-efficient data structures [19], 
[20]. For datasets of immense size, research on parallel and 
GPU-accelerated computations (including approximation 
schemes) supports scaling persistent homology to more or less 
the same levels as Big Data scenarios [21]. 

 

There is more and more proof that topological descriptors 
can be used along with conventional machine learning (ML) 
features and, in certain cases, they can even significantly 
improve performance and make it easier to understand the 
model. Usually, persistent summaries (diagrams, barcodes) 
are converted into machine-learnable vectors through 
featurization techniques like persistence landscapes, 
persistence images, persistence silhouettes, and statistical 
summaries (e.g., persistent Betti numbers) that enable 
topological information to be introduced to the standard 
classifiers or regressors [19, 20]. These vectorized 
topological embeddings are stable and have been applied 
successfully in classification tasks across various fields such 
as image analysis, materials science, and biomedicine with 
great datasets. 
In addition to simply featurizing the data, topological machine 
learning and topological deep learning are examples of tightly 
coupling topology with learning architectures where the latter 
include persistent homology being used as an explicit 
regularizer, the construction of layers within neural networks 
that compute or approximate the topological signatures, and 
GNN combined with topological pooling/aggregation to 
represent higher-order relations. The topological ML surveys 
demonstrate a broad range of methods from pre-processing 
(topological featurization) to the end-to-end architecture that 
learns representations being informed by topology, where 
each has its own trade-off in scalability, interpretability, and 
theoretical guarantees [19, 22]. TDA tools 
are gradually turning out to be formidable partners when it 
comes to combining different modeling approaches, which 
use geometry and topology to get better generalization and 
explainability on difficult datasets [4, 19, 20]. This is because 
such tools are getting increasingly computationally efficient 
and are also getting better integrated (e.g., through libraries 
like GUDHI and optimized packages like Ripser) with ML 
tool-chains. 
Figure 1 displays an overview of the core concepts and 
connections of TDA within data science. The left branch 
outlines the basics of topology, including simplicial 
complexes and homology theory that describe higher-order 
relationships and topological features in data. The center 
highlights the key algorithms—Persistent Homology and 
Mapper—that extract and visualize these structures. The 
right branch shows the relationship between TDA and 
machine learning, emphasizing integration with learning 
workflows, improved interpretability and stability, and the 
role of topological invariants in summarizing the global 
shape of data. Table 1 outlines the main conceptual pillars of 
TDA in data science. It summarizes how topological 
concepts (simplicial complexes and homology) capture the 
global structure of high-dimensional data, how Persistent 
Homology and Mapper provide multi-scale and interpretable 
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summaries, and how TDA integrates with machine learning 
to produce topology-aware features that enhance model 
performance and interpretability. Each row highlights the 
core idea, computational workflow, key outputs, strengths, 

representative tools, and notable references that collectively 
illustrate TDA’s methodological framework and practical 
relevance across domains.

 
Figure 1 Topological Data Analysis (TDA) in Data Science 

 
Table 1 Summary of Core Components and Methods in Topological Data Analysis (TDA) 
 

Section Core Idea How It Works  
Key 
Outputs 

Strengths 
Notable 
Tools/Methods 

Refs 

Basics of 
Topology in 
Data Science 

Use topology to 
capture the global 
“shape” of 
complex, high-
dimensional, 
noisy data 

Build a simplicial complex 
from data; compute 
homology groups and Betti 
numbers (β₀ components, β₁ 
loops, higher-dim cavities) 

Betti 
numbers / 
homologic
al 
invariants 
summarizi
ng 
connectivit
y and holes 

Invariants are 
robust to many 
deformations; 
compact, 
interpretable 
summaries 

Simplicial 
complexes; 
homology theory 

[13], 
[16] 

Persistent 
Homology & 
Mapper 

Two 
complementary 
summaries: 
Persistent 
Homology (PH) 
for multi-scale 
features; Mapper 
for interpretable 
shape graphs 

PH: build filtrations, track 
birth–death of features via 
matrix reduction.  
Mapper: choose filter (lens) 
→ cover with overlapping 
intervals → cluster pre-
images → link overlapping 
clusters 

PH: 
barcodes/p
ersistence 
diagrams. 
Mapper: 
simplified 
graph/simp
licial 
complex 

PH: stable multi-
scale signatures. 
Mapper: intuitive 
visualization and 
exploratory 
analysis 

PH filtrations 
(VR/Čech), reduction 
algorithms; Mapper 
variants 
(probabilistic, 
distribution-aware), 
stability/statistics 

[17], 
[18] 

Relationship 
between 
TDA & ML 

Inject topological 
signatures into 
ML pipelines; 
scale 
computations to 
big data 

Compute persistence, 
features (images, 
landscapes, vectors) → 
feed to ML models, 
leverage optimized libraries 
and accelerators 

Topology-
aware 
features for 
classificati
on, 
clustering, 
regression, 
anomaly 
detection 

Captures global 
structure ML 
often misses; 
modern 
implementations 
make PH practical 
and scalable 

Ripser, GUDHI; 
sparse/cohomology 
reductions; 
parallel/GPU & 
approximation 
schemes 

[19], 
[20], 
[21] 
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III. METHODOLOGICAL FRAMEWORK 

A. Data Preprocessing for TDA in Big Data Environments 

The application of Topological Data Analysis (TDA) to 

modern high-dimensional as well as large-scale datasets 

depends greatly on an efficient data pre-processing step. The 

data from the real world are usually full of noise as well as 

missing values and redundancy, which can bury the 

underlying topological structures. Therefore, preprocessing is 

usually a combination of data cleaning, normalization, and 

dimensionality reduction; this can be done by using different 

approaches like Principal Component Analysis (PCA), t- 

distributed Stochastic Neighbor Embedding (t-SNE), and 

Uniform Manifold Approximation and Projection (UMAP). 

The last two techniques retain local geometric relations while 

also reducing the computational complexity for the persistent 

homology computation [18, 23]. 

To deal with the Big Data environment, methods such as 

subsampling and random projection are usually employed 

which yield point clouds that are representative of the 

topology. It has been experimentally found that persistence 

diagrams obtained through stratified subsampling and 

distance-preserving embedding resemble those computed on 

full datasets with a great saving in time and memory. In 

addition, topological denoising algorithms based on local 

manifold approximations along with density-based filtering 

have proved to be very effective in avoiding outliers and 

noise caused by measurements[24] . In a distributed data 

pipeline, Apache Spark, Dask, and TensorFlow Data Service 

can be used as the scalable frameworks which would support 

the application of the preprocessing stages beforehand TDA 

feature extraction [25]. Before applying TDA to large and 

heterogeneous datasets, careful preprocessing is required to 

ensure that the extracted topological features are meaningful 

and computationally tractable. The workflow displays in 

figure 2 begins with raw data, which are often noisy, 

incomplete, and high-dimensional. The cleaning and 

normalization stage addresses missing values, standardizes 

scales, and reduces redundancy to produce consistent input 

representations. Next, denoising techniques—such as 

manifold approximation and density-based filtering—help to 

remove spurious variations while maintaining intrinsic 

structure. Dimensionality reduction (e.g., PCA, t-SNE, 

UMAP) projects data onto a low-dimensional manifold 

suitable for simplicial complex construction. To handle 

large-scale data, scalable execution frameworks (e.g., 

Apache Spark, TensorFlow Data Service) are employed for 

distributed or parallel computation. The processed data are 

then ready for the TDA stage, where persistent homology 

and related algorithms are computed to uncover global shape 

and connectivity patterns in big data environments. 

 

 
 

Figure 2 Data Preprocessing for TDA in Big Data Environments.

 

 
 

B. Scalable Algorithms for TDA 

The importance of effective data preprocessing cannot be 
overemphasized in applying Topological Data Analysis 
(TDA) of modern high-dimensional and large-scale datasets. 
The real-life data is a mix of various problems like noise, 
missing values, and redundant dimensions that could hide the 
topological structures. Preprocessing consists of data 
cleaning, normalization, and dimensionality reduction 
through the application of Principal Component Analysis 
(PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), 
and Uniform Manifold Approximation and Projection 
(UMAP) that keep the local geometric relations and lessen the 
computational complexity for persistent homology 
computation [18, 23]. Classic persistent homology 
algorithms encounter an issue of combinatorial explosion as 
the data size increases. To overcome the problem of 
scalability, a number of algorithmic innovations have been 
proposed. GPU-accelerated implementations (e.g., Ripser++, 
PHat-GPU) utilize parallel reduction of boundary matrices to 
achieve a tenfold increase in speed for the computation of 
homology on large point clouds [26].Moreover, distributed 
and out-of-core algorithms have been devised for computing 
Vietoris–Rips filtrations over huge datasets by splitting 

complexes and combining intermediate results [27]. Classic 
persistent homology algorithms encounter an issue of 
combinatorial explosion as the data size increases. To 
overcome the problem of scalability, a number of algorithmic 
innovations have been proposed. GPU-accelerated 
implementations (e.g., Ripser++, PHat-GPU) utilize parallel 
reduction of boundary matrices to achieve a tenfold increase 
in speed for the computation of homology on large point 
clouds [10]. Moreover, distributed and out-of-core algorithms 
have been devised for computing Vietoris–Rips filtrations 
over huge datasets by splitting complexes and combining 
intermediate results [27]. Recent studies bring forth 
approximation-based TDA, including witness complexes and 
sparsified filtrations, that offer provable error bounds 
together with considerable computational efficiency [5]. The 
hybrid methods that merge cohomology computations with 
matrix factorization techniques also lessens memory needs 
for high-dimensional data [28]. Such scalable algorithms, 
which are frequently packaged in libraries like GUDHI, 
DIPHA, and TDAmapper, have rendered TDA practicable for 
the contemporary Big Data and real-time analytics situations 
thus making it possible to interface with AI pipelines at a 
large scale [29]. 

C. Integration with Deep Learning and Graph Neural 

Networks (GNNs) 

The combination of TDA and Deep Learning has given birth 
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to the new subfield called Topological Deep Learning 

(TDL), which consists of the incorporation of topological 

invariants into neural architectures. The process of persistent 

homology may be utilized as a regularization constraint that 

guarantees topological consistency in the hidden 

representations learned by autoencoders or convolutional 

neural networks (CNNs) [30]. Changes in the persistence 

diagram of the encoded features would not be allowed by 

the topological loss functions, resulting in more structurally 

accurate reconstructions [31]. 

Persistent Betti numbers or persistence landscapes are 

examples of topological embeddings which have been used 

in Graph Neural Networks (GNNs) to include node and 

graph representations that are able to give higher-order 

interactions other than just pairwise edges [32]. Newer GNN 

architectures like TopoGNN, PH-GCN, and TopoDiffusion 

have explicitly allowed the propagation of persistence 

information during message passing or pooling, thus 

making them more expressive as well as noise resistant 

structurally [33]. They not only provide interpretability but 

also improvements in performance that span various fields 

such as bioinformatics, materials science, and computer 

vision [34]. 

D. Proposed Hybrid Framework 

We propose a hybrid TDA–Deep Learning framework that 

integrates Persistent Homology with Autoencoders and 

Graph Neural Networks to develop topologically aware 

embeddings for complex datasets. The pipeline comprises 

five main steps: 

1. Preprocessing & Subsampling: reduction of data 

at scale by UMAP and stratified sampling. 

2. Topological Feature Extraction: filtered simplicial 

complexes technique to compute multi-scale 

persistent homology features. 

3. Topological Autoencoder Module: unsupervised 

reconstruction with topological loss that retains 

key homological structures. 

4. Graph Neural Topology Module: refinement of 

structure by GNN aggregation with persistence- 

informed node attributes. 

5. Fusion & Prediction: for subsequent operations like 

classification or anomaly detection, latent and 

topological embeddings are concatenated. 

The goal is to achieve a topology-preserving yet deep- 

represented architecture by introducing the stability of 

persistence diagrams and the expressiveness of neural models 

[35, 36]. Such hybridization is expected to lead to more 

robust generalization in the case of complex, structured, and 

noisy datasets—in particular, in the fields of biomedical, 

sensor, and materials data. Figure 3 presents a hybrid 

framework that combines topological data analysis (TDA) 

with deep learning to enhance representation learning and 

predictive performance. The process starts with data 

preprocessing and subsampling. 

 

 
Figure 3 Hybrid Framework Integrating Topological and 

Neural Modules. 

IV. APPLICATIONS 

A. TDA in Healthcare and Bioinformatics 

Topological Data Analysis (TDA) is becoming 
more and more popular in the medical field, where it is used 
to find differences in structures that are not seen easily in high- 
dimensional data. In medical imaging, persistent homology 
not only helps in the classification of textured and 
morphological features which are given by the pixel 
intensities but also has a wider scope of application. As an 
instance, TDA is being successfully used in radiology, where 
it is possible to classify the areas of the tumor and non-tumor 
regions based on the texture created from the images with 
more interpretability and robustness than when using the 
classic radiomic features [37]. Additionally, in detecting 
COVID-19, a combination of TDA and ML methods was able 
to extract persistent homology signatures from CT images of 
the lungs and use those as input for classifiers with over 97% 
accuracy and AUC > 0.99 [38]. 

In the fields of genomics and molecular biology, TDA is 
applied to the analysis of gene expression and interaction 
networks to find disease subtypes and regulatory modules. 
Such a comprehensive review is done by Skaf et al. where they 
enumerate TDA applications in various segments like cancer, 
neuroimaging, and proteomics among others [39]. Persistent 
homology has been successfully used to uncover genotype– 
phenotype associations by analyzing the presence of high- 
dimensional loops and voids in molecular data that have a 
correlation with disease progression. 

Also, TDA is being utilized in physiological signals to analyze 
cardiovascular signals (e.g. ECG, PPG) and to find 
topological invariants that are linked with disease states, thus 
facilitating the diagnosis and prognosis of cardiovascular 
conditions [40]. These instances prove that TDA can be 
regarded as a strong auxiliary tool along with the traditional 
statistical and machine learning methods in the health and 
biological sciences. 

B. TDA in Network and Graph Analysis 

In various domains, such as social, biological and 
infrastructural networks, the higher-order connectivity 
patterns are more complex than just pairwise edges. TDA 
method can help identify the loops, cycles and cavities in the 
networks that mirror their deeper structural features. Petania 
et al. talk about TDA’s potential to “encode interactions 
beyond networks” and getting mesoscopic structures in 
complex systems [41]. 

For power grid systems, persistent homology has been 
applied for vulnerability analysis: studying the changes in 
homological features through simulated failures can help 
identify critical topological weak points and predict cascading 
failures. In communication and social networks, TDA 
overcorrelation or adjacency-based filtrations brings out 
community structures, network evolution, and anomalies that 
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are not detectable through standard graph metrics. 

A few studies have developed time-evolving correlation 
networks in finance or neuroscience and performed 
persistent homology to monitor the shifts in the topology of 
interconnectedness, thereby uncovering the sudden changes 
or regime shifts in the underlying system. This peculiar 
attribute of TDA encourages its application in the field of 
dynamic network analysis and monitoring [42]. 

C. TDA in Financial and Economic Data 

Financial markets are intricate, nonlinear systems 

wherein classical linear models still struggle. TDA grants 

the ability to find out the structural changes and the early 

warning signals of the crisis. For instance, Gidea & Katz 

utilize TDA in the correlation networks of stock indices and 

analyze the topological changes evolving before the 2008 

crash, with the emerging loops interpreted as warning signs 

[43]. 

With the application of sliding-window persistence 

landscapes to financial returns in the time series domain, it 

becomes evident that there are growing trends in low- 

frequency norms which are preceding crashes, thus serving 

as a predictive indicator of instability [44]. More modern 

research examines the possibility of using TDA to foresee 

financial melt-downs by locating topological features in 

multivariate price data, thus putting TDA in the same line 

as econometric and machine learning models in terms of its 

role [45]. 

In addition, in the case of macroeconomic networks— 

such as trade, credit, or banking networks—TDA can 

uncover hidden structural changes in the connectivity 

pattern of the network, thereby giving new perspectives on 

systemic risk and contagion that are not only based on 

standard network centralities or spectral methods[46]. 

Figure 3 represents the applications of Topological Data 

Analysis. 

 
Figure 4 Applications of Topological Data Analysis (TDA). 

V.  CHALLENGES AND OPEN 

RESEARCH DIRECTIONS 

 
Despite the growing successes and applications of TDA, 

numerous fundamental challenges remain to be addressed 
before its full potential in Big Data settings can be realized. 

a) Scalability and Computational Complexity 

Among the major challenges to TDA's large scale 
usage is the combinatorial explosion linked to simplicial 
complexes construction like Vietoris-Rips or Čech 
complexes. The increasing size and dimensionality of 
datasets result in exponential growth of simplices, thus the 
direct calculation of persistent homology becomes 
unfeasible for large datasets. This issue is a major limitation 
of TDA methods that are currently being used because they 

confine themselves to moderate-scale data or otherwise, 
require very effective dimensionality reduction or 
sparsification techniques [46]. 

The use of GPU-accelerated, parallel, and distributed 
implementations does help mitigate this problem but they 
come with memory usage, load balancing, and complexity of 
merging partial results trade-offs. For instance, the issue of 
designing scalable algorithms that maintain theoretical 
guarantees (e.g., upper bounds on error) while efficiently 

distributing large boundary matrix reductions is still left open 
as an area of research [47]. 

Furthermore, in the context of real-world Big Data pipelines, 
streaming, incremental, and out-of-core TDA algorithms are a 
must in order to process the data continuously coming in 
without the need of recomputing from scratch—this is a 
direction that is still underdeveloped and requires innovations 
in both algorithmic design and data structures [48]. 

Specialized hardware has become another important 
driver of energy efficiency. Edge TPUs, GPUs, and FPGAs, 
for example, are designed for deploying AI workloads at high 
throughput, but with significantly lower energy costs 
compared to typical CPU usage. Accelerators leverage 
parallelism and low-precision arithmetic to maximize 
throughput [49]. Additionally, neuromorphic chips, which 
simulate the operations of biological energy-efficient neurons, 
are being developed to reduce energy usage in the long run 
within continuous AI workloads [50].  

b) Noise Sensitivity in Persistence Diagrams 

Even though theorems regarding stability ensure that 
input with small perturbations will only result in changes that 
are bounded in the persistence diagrams, in reality, there are 
situations like noise in the data, outliers, and irregularities in 
sampling which cause us to break the assumptions of these 
theorems. The introduction of, for instance, measurement 
errors or non-evenly distributed samples may result in the 
presence of non-existent topological features that could 
possibly hide the real structure [51]. 

A study that made a focus on the problem of noise-robust 
topology estimation through persistent homology has shown 
that even very good persistent homology pipelines may 
undergo deterioration when subjected to structured noise or 
adversarial perturbations. This is especially true with images 
where noise at the pixel level complicates the identification of 
the actual cycles [52]. The methods of such as filtering out 
short-lived features, persistence simplification, denoising 
filtrations, or using probabilistic persistence might be able to 
help with this issue, but they would then be risking the loss of 
real signal or the data being over-smoothened. 

The other issue that comes up is the sensitivity of parameters: 
the selection of filtration scale and the radius of the 
neighborhood, as well as the size of the sub-sample, are all 
factors that have a very critical impact on the diagrams 
produced. The development of resilient methods for the 
automatic selection of scale and noise-adaptive filtration 
remains a very active and challenging area of research. 

c) Interpretability and Explanation of Topological 

Signatures 

What TDA achieves are compact and informative 
summaries made possible through persistence diagrams or 
barcodes, yet drawing these abstract topological signatures 
into valuable insights for domain experts still remains a 
challenge. Connecting topological invariants (e.g., Betti 
numbers, loops, voids) to domain-level phenomena is found 
to be a maximum challenge by most users, particularly when 
data is either high-dimensional or heterogeneous. 

Mapper visualizations, barcode plots, or persistence 
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landscapes have been suggested as intermediate interpretative 
tools, but very often, such methods require expert judgment to 
infer  significance.  The  absence  of  highly  interpreted 
frameworks or topological features that are standardized or 
annotated adds up to the barriers against the potential 
applicability of TDA in various industries like medicine, 
biology, etc. (e.g., medicine, biology) [3]. 

In the deep learning context, TDA came to the fore as an 
instrument for interpretability: for example, the topology of 
hidden-layer activations has been investigated through 
Mapper graphs to expose class separation and internal 
hierarchical structure [53]. Yet, the implementation of such 
methodologies on a large scale and for providing real-time 
explanations is still very limited. 

D) Integration with AI Models (Deep Learning / 

Hybrid Models) 

The incorporation of topological data into machine 
learning as well as into deep neural networks is a very 
promising yet challenging task. One major challenge is the 
issue of differentiability; the outputs of persistence 
computation are in the form of diagrams that are composed 
of discrete and combinatorial elements, which are not easy 
to differentiate among. Therefore, it is very difficult to 
apply them directly to gradient-based training. The research 
community has been exploring different ways such as 
differentiable surrogates or approximate backpropagation 
through persistence layers, but all these methods have some 
limitations in terms of scalability and theoretical 
foundations [54]. 

In addition, there are different ways of representing 
persistence diagrams (persistence images, landscapes, 
kernel embeddings), and these are still somewhat ad hoc. 
The performance of the chosen featureization has a strong 
influence, yet there is not a universally optimal method 
existing. Hybrid architectures (e.g., TDA + autoencoders, 
TDA + GNNs, etc.) confront drawbacks of either losing 
topological accuracy or losing the expressiveness of the 
new representations [55]. 

As the topological deep learning area is developing, the 
surveys indicate that there are still many isolated 
architectures that lack inter-task benchmarking, and that the 
optimal connection between topology and learning is still 
largely unexplored [55]. Figure 5 highlights the four major 
research challenges currently shaping the development of 
Topological Data Analysis (TDA). 

 

Figure 5 Challenges and Open Research Directions in 
Topological Data Analysis (TDA) 
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Abstract

This paper studies a two–species mutualism model formulated as a system of de-
lay differential equations with two discrete lags τ1, τ2 that encode time–lagged
self–regulation and interspecific facilitation. Focusing on the positive coexistence
equilibrium, we derive computable criteria for local asymptotic stability by lin-
earization and analysis of the associated characteristic quasipolynomial. In the
zero–delay limit, stability is characterized by necessary and sufficient Routh–Hurwitz
conditions expressed explicitly in the model parameters. With a single nonzero de-
lay, the imaginary–axis crossing problem reduces to a quartic in ω2, which yields
delay–independent stability regions; when those are violated, we obtain closed–form
expressions for the Hopf frequency and the corresponding threshold delays τ1k. For
the case of two nonzero delays, we eliminate the phase terms by expressing cos(ωτ2)
and sin(ωτ2) and using the fundamental relation between them to characterize the
crossing set and construct branches τ2k as functions of the model coefficients and
the fixed τ1. Transversality of the eigenvalue crossing is verified via dReλ/dτ ̸= 0,
ensuring the occurrence of Hopf bifurcations and the emergence of small–amplitude
periodic orbits. Time–domain simulations corroborate the analytical boundaries,
illustrating delay–induced loss of stability and the birth of stable oscillations for
parameter values relevant to ecological mutualism. Collectively, the results quan-
tify how delayed mutualistic feedback interact, with nonlinear density dependence,
to describe stability regions in the (τ1, τ2)–plane, providing practical algebraic tests
for stability and bifurcation in a broad class of delayed mutualism models.

∗This paper is a joint work with Laurance Fakih, Paul Georgescu, and Andrei Halanay.
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Abstract 

In this note we present the C++ computer programs developed with the scope of improving the complexity orders of the 
algorithms of [1] by mean of which Canepa and Gaba classified on one hand the complex elliptic curves E for which 
there exist non-cyclic subgroups  C of finite order n of the additive group (E, +) such that the elliptic curves E/C and E 
are isomorphic and on the other hand, upon imposing some  conditions in order to include the cyclic case, the complex 
elliptic curves E for which there exist subgroups  C of (E, +) of finite order n such that the elliptic curves E and E/C are 
isomorphic. We also provide a thoroughly comparison of the  results we have obtained when running the two computer 
programs on the same machine after doubling its Random Access Memory size. 

Key words: algorithm, non-cyclic subgroup, elliptic curve, fixed point, complexity order 

1. INTRODUCTION
Let E be an elliptic curve defined over the complex numbers field and C a subgroup  of finite order
n  of the additive group of points (E, +). That is, C is a subgroup of order n of the n-torsion
subgroup of E, namely E[n]. The group E/C has a structure of Riemann variety since C acts
effectively and properly discontinuous on E and the structure is compatible with the natural
projection map E→E/C which is an unramifed isogeny of degree n.

2. CONTENT
This work is a follow up of [2] and deals with creating and implementing in C++ two faster
computer programs developed by the authors in order to improve the complexity orders of the
algorithms created by Canepa and Gaba in [1] , with the purpose of classifying on one hand  the
complex elliptic curves E for which there exist  non-cyclic subgroups  C of (E, +) of order n such
that the elliptic curves  E and E/C are isomorphic and on the other hand, upon imposing certain
conditions in order to include the cyclic case, classifying the complex elliptic curves E for which
there exist subgroups  C of (E, +) of order n such that the elliptic curves  E and E/C are isomorphic.
We briefly recall how were the algorithms developed and we extend the results to the general case
in the second computer program. We introduce several helper classes which will replace
mathematical functions using dynamic programming. Using the helper classes the new algorithms
are faster than the old ones, their complexity orders being O(√𝑛𝑛) faster than the complexity orders
of the old ones. We provide various examples of the above classes of complex elliptic curves.  We
also provide a thoroughly comparison of the  results we have obtained when running the two
computer programs on the same machine after doubling its Random Access Memory size. We
compute the CPU time it takes to complete the calculations.
We remark that the isomorphism E isomorphic to E/C can only occur for non-singular projective
curves of genus 1. In higher genus, if  X is a non-singular projective  curve of genus g(X) greater or
equal to 2, then one can show that there is no non-trivial finite subgroup C of the group of
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automorphisms of X, Aut(X), acting holomorphically and effectively on X such that X is 
isomorphic to X/C. Consequently, the problem we study cannot be generalized to higher genus non-
singular projective curves. 
 
The main theorem used for developing the codes is the following one: 
 
Theorem. ([1], Theorem 2.1)  Let E be a complex elliptic curve. 
Then there exists a finite subgroup C of (E,+) such that 𝐶𝐶 ≅ ℤ/𝐷𝐷1 × ℤ/𝐷𝐷2 and 𝐷𝐷1|𝐷𝐷2  , 𝐷𝐷1 ≠ 𝐷𝐷2  
and with the property that 𝐸𝐸

𝐶𝐶
≅ E if and only if τ satisfies the equation τ2 = uτ + v, u, τ ∈ ℚ, ∆=

u2 + 4v < 0 and there exist  (𝑎𝑎, 𝑏𝑏′) ∈ ℤ × ℤ with 𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑏𝑏′) = 𝐷𝐷1 such that, if one denotes by 
(𝑎𝑎,𝐴𝐴, 𝑏𝑏,𝐵𝐵) the numbers (𝑎𝑎,𝐴𝐴, 𝑏𝑏,𝐵𝐵): = �𝑎𝑎, 𝑢𝑢2𝑣𝑣1

𝑑𝑑2
b′, 𝑢𝑢2𝑣𝑣2

𝑑𝑑2
b′,𝑎𝑎 + 𝑢𝑢1𝑣𝑣2

𝑑𝑑2
b′� and by M the matrix: M 

=�𝑎𝑎 𝐴𝐴
𝑏𝑏 𝐵𝐵�, then we have the relation  det(M) = 𝐷𝐷1𝐷𝐷2. We have denoted by 𝑢𝑢: = 𝑢𝑢1

𝑢𝑢2
, 𝑣𝑣: = 𝑣𝑣1

𝑣𝑣2
 with 

𝑢𝑢2, 𝑣𝑣2 ≠ 0 and 𝑢𝑢1, 𝑣𝑣1,𝑢𝑢2, 𝑣𝑣2 ∈ ℤ, 𝐺𝐺𝐺𝐺𝐺𝐺(𝑢𝑢1,𝑢𝑢2) = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑣𝑣1, 𝑣𝑣2) = 1,  𝑑𝑑2 ≔ 𝐺𝐺𝐺𝐺𝐺𝐺(𝑢𝑢2, 𝑣𝑣2). 
Moreover, the isomorphism 𝐸𝐸

𝐶𝐶
≅ E comes from a morphism of varieties: ϕa,b′: E → E which has the 

following properties:  
 

1) deg (ϕa,b′) = 𝐷𝐷1𝐷𝐷2 ; 
2) it is a group homomorphism; 
3) 𝐾𝐾𝐾𝐾𝐾𝐾�ϕa,b′� = C ; 
4) 𝐾𝐾𝐾𝐾𝐾𝐾�ϕa,b′� = νz, ν=a+bτ. 

  
Remark. When writing the second computer program we allow the case 𝐷𝐷1 = 1 where 𝐷𝐷1 =
𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑏𝑏′). 
 
3. CONCLUSIONS  
 
The computer programs developed can be used in the theory of complex elliptic curves. We 
emphasize here the utility of studying quotients of complex elliptic curves and also of studying 
isomorphisms classes of type E isomorphic to E/C which can be further used in studying fixed 
points of the action of Fricke’s involution on the open modular curves Y0(n). We also present 
several applications of Hurwitz's Theorem for compact Riemann surfaces ([3]) and of Chow's 
theorem for abelian varieties ([4]). 
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Abstract 

We are witnessing a rapid transformation of society, driven largely by exponential advances in Artificial Intelligence 
(AI). This technological revolution is also affecting the field of education, bringing with it unprecedented challenges and 
opportunities. In order to prepare future generations of students for a world shaped by AI, it is imperative that teachers 
themselves be equipped with solid knowledge and skills in this field. Thus, the integration of AI into the initial training of 
teachers is a fundamental necessity in the development of teaching skills. 

Key words: Artificial Intelligence, initial teacher training, teaching competence 

We are witnessing a rapid transformation of society, driven largely by exponential advances in 
Artificial Intelligence (AI). This technological revolution is also affecting the field of education, 
bringing with it unprecedented challenges and opportunities. In order to prepare future generations of 
students for a world shaped by AI, it is imperative that teachers themselves are equipped with solid knowledge 
and skills in this field. Thus, the integration of AI into initial teacher training is a fundamental necessity in 
the development of teachers' skills. 

At the European level [1], a series of significant investments have been made in numerous research and 
innovation activities related to the digitization of education. These investments have been made through various 
European programs, such as the Horizon 2020 program [2]. The Horizon 2020 program covered the following 
areas: 

· mentoring programs for schools: integrating innovation by spreading advanced ICT-based teaching
practices across a wide range of schools (DT-TRANSFORMATIONS-21-2020); a new generation internet that's 
good for empowerment and inclusion (ICT-2019-30); 

· building international partnerships in low- and middle-income countries (ICT-39-2016-2017);
· technologies for learning and skills (ICT-22-2016);
· technologies for better human learning and teaching (ICT 20-2015);
· advanced gaming/digital gamification technologies (ICT 21-2014).
The European Commission aims to modernize education and training by funding research and innovation

and promoting digital technologies used for learning. Thus, through the Digital Education Action Plan (2021-
2027) [3], the EU wants to support the sustainable and effective adaptation of EU Member States' education and 
training systems to the digital age by establishing 13 actions in two priority areas: 

· promoting the development of a high-performance digital education ecosystem;
· strengthening digital skills and competences for digital transformation.
Within the first priority area, a group of experts was tasked with developing ethical guidelines on artificial

intelligence and the use of data in education and training[4] and for the second priority area, another group of 
experts was tasked with developing common guidelines for teachers and educators to promote digital literacy 
and combat disinformation through education and training[5]. 

Following an initiative by the European Parliament, the European Commission is co-financing a series of 
pilot projects on digital education. A concrete example is the pilot project "Girls 4 STEM in Europe" [6], which 
aims to increase girls' interest in science, technology, engineering, and mathematics (STEM) subjects, studies, 
and careers by promoting and teaching STEM subjects in attractive and engaging ways. 

The world in which today's students will live and work will be profoundly influenced by AI. From 
automating repetitive tasks to analyzing complex data and generating content, AI is reshaping industries, 
economies, and, implicitly, the skills needed for success. Teachers are central pillars in preparing students for 
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this reality. Without a solid understanding of AI, teachers risk providing students with an education that is out 
of sync with the demands of the future. 

Here are some key reasons why initial teacher training in AI is important: 
1.       Preparing students for the future. 
Future teachers need to understand how AI will affect the job market in order to guide students in choosing 

relevant educational and career paths. They need to teach students not only about AI, but also how to work 
alongside AI, developing complementary skills such as critical thinking, creativity, complex problem solving, 
and emotional intelligence—areas where AI is still lacking. 

2.       Optimizing the teaching process. 
AI offers powerful tools to personalize learning and streamline classroom management. Teachers trained 

in AI will be able to use adaptive platforms that adjust content and teaching pace to each student's needs, use AI 
systems for quick and personalized feedback, and automate administrative tasks, freeing up valuable time for 
direct interaction with students. 

3.       Developing critical and ethical thinking. 
As AI becomes more prevalent, ethical challenges related to bias, data privacy, and social impact are also 

emerging. Teachers need to be able to initiate informed discussions with students about these issues, encouraging 
responsible and ethical use of technology. Without their own understanding of these dilemmas, it will be difficult 
for them to guide students in developing critical and ethical behavior. 

4.       Innovation and research in education. 
Teachers who understand AI can contribute to pedagogical innovation. They can experiment with new 

AI-based teaching approaches, participate in research on the effectiveness of AI tools in education, and become 
developers of AI-assisted educational solutions themselves. 

5.       Combating technological anxiety. 
Poor integration of AI can cause anxiety and reluctance among teachers. Solid initial training will 

demystify AI, reduce unfounded fears about its negative influence on the human psyche, and encourage a 
proactive attitude of exploration and adaptation to new technologies. 

Before we can develop effective training programs, we need to understand where we stand at the moment. 
A questionnaire on the use of AI in the teaching activities of future teachers, administered to students enrolled 
in initial teacher training programs (bachelor's, master's degrees in education), could provide a clear picture of 
the current situation. 

In addition to providing an overview, the use of a questionnaire has multiple benefits, including: 
-Supporting curriculum decisions: The data collected will provide a solid basis for adapting and updating 
initial training programs. Thus, education science faculties can develop specific modules, optional courses, or 
practical workshops that meet the real needs of future teachers. 
-Development of personalized educational resources: Based on the profiles identified, differentiated learning 
resources can be created—from introductory guides for those with little experience to advanced materials for 
those already familiar with AI. 
-Evaluating the impact of training: By applying the questionnaire at both the beginning and end of training 
programs, the effectiveness of educational interventions and their impact on students' knowledge and attitudes 
can be measured. 
-Anticipating future needs: Monitoring perceptions and use of AI among young teachers will allow the 
education system to anticipate trends and prepare teachers for upcoming AI innovations. 
-Creating a responsible pro-AI culture: By openly addressing the topic and encouraging reflection on AI, the 
questionnaire contributes to creating an organizational culture in which AI is seen as an educational partner, not 
a threat. 

 
REFERENCES: 
[1] https://digital-strategy.ec.europa.eu/ro/policies/digital-learning ; 
[2] https://digital-strategy.ec.europa.eu/ro/policies/digital-learning ; 
[3] https://education.ec.europa.eu/focus-topics/digital-education/plan ; 
[4]https://ec.europa.eu/transparency/expert-groups-register/screen/expert-
groups/consult?lang=en&do=groupDetail.groupDetail&groupID=3774; 
[5]https://ec.europa.eu/transparency/expert-groups-register/screen/expert-
groups/consult?lang=en&do=groupDetail.groupDetail&groupID=3774; 
[6] https://icse.eu/international-projects/gem/; 

International Symposium & International Student Workshop on Interdisciplinary Mathematics in the CiTi areas 
_______________________________________________________________________________________________________________________________

254

https://digital-strategy.ec.europa.eu/ro/policies/digital-learning
https://digital-strategy.ec.europa.eu/ro/policies/digital-learning
https://education.ec.europa.eu/focus-topics/digital-education/plan
https://ec.europa.eu/transparency/expert-groups-register/screen/expert-groups/consult?lang=en&do=groupDetail.groupDetail&groupID=3774
https://ec.europa.eu/transparency/expert-groups-register/screen/expert-groups/consult?lang=en&do=groupDetail.groupDetail&groupID=3774
https://ec.europa.eu/transparency/expert-groups-register/screen/expert-groups/consult?lang=en&do=groupDetail.groupDetail&groupID=3774
https://ec.europa.eu/transparency/expert-groups-register/screen/expert-groups/consult?lang=en&do=groupDetail.groupDetail&groupID=3774
https://icse.eu/international-projects/gem/


AVERAGE OVERSHOOT OF JUMP-DIFFUSION PROCESSES

Romain Mrad1 and Mario Lefebvre3

Fie τ(x) prima dată când procesul unidimensional de difuzie prin
salturi {X(t), t ≥ 0} părăses, te intervalul (c1, c2). Studiem depăs, irea medie
deasupra frontierei la c2 ı̂n cazul salturilor ascendente. Mai ı̂ntâi, derivăm
ecuat,ia integro-diferent,ială satisfăcută de funct,ia R(x) = E[(X(τ(x)) −
c2)+] care denotă depăs, irea medie. Apoi, arătăm că, ı̂n cazul salturilor
exponent,iale, această ecuat,ie integro-diferent,ială poate fi transformată ı̂ntr-

o ecuat,ie diferent,ială ordinară de ordinul trei. În cele din urmă, solut,ii
explicite ale ecuat,iei diferent,iale se obt,in ı̂n cazul ı̂n care partea continuă a
procesului de difuzie prin salturi este un proces Wiener particular s, i când
este un proces CIR particular.

Let τ(x) be the first time that the one-dimensional jump-diffusion process
{X(t), t ≥ 0} leaves the interval (c1, c2). We study the average overshoot
above the boundary at c2 in the case of upward jumps. First, we derive the
integro-differential equation satisfied by the function R(x) = E[(X(τ(x))−
c2)+] that denotes the average overshoot. Then, we show that, in the case
of exponential jumps, this integro-differential equation can be transformed
into a third-order ordinary differential equation. Finally, explicit solutions
to the differential equation are obtained in the case when the continuous
part of the jump-diffusion process is a particular Wiener process, and when
it is a particular CIR process.

Keywords: integro-differential equation, Brownian motion, infinitesimal
generator, Dynkin’s formula.

2010 Mathematics Subject Clasification: 60J 75, 60J 70.

1. Introduction

We consider the one-dimensional jump-diffusion process {X(t), t ≥ 0}
defined by

X(t) = X(0) +

∫ t

0

µ[X(s)]ds+

∫ t

0

σ[X(s)]dW (s) +

N(t)∑
k=1

Yk, (1)

where {W (t), t ≥ 0} is a standard Brownian motion, {N(t), t ≥ 0} is a Poisson
process with rate λ (independent of the Brownian motion), and Y1, Y2, . . . are
independent random variables that are distributed as the random variable
Y having the probability density function fY (y), and are independent of the

1Master’s student, Polytechnique Montréal, Canada, e-mail: romain.mrad@polymtl.ca
2Full professor, Polytechnique Montréal, Canada, e-mail: mlefebvre@polymtl.ca
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Poisson process. The functions µ(·) ∈ R and σ(·) ≥ 0 are assumed to be such
that the stochastic differential equation

dX(t) = µ[X(t)]dt+ σ[X(t)]dW (t) (2)

has a unique solution (which is a diffusion process).
Next, let τ(x) be the first-passage time defined by

τ(x) = inf{t ≥ 0 : X(t) /∈ (c1, c2) | X(0) = x ∈ [c1, c2]}. (3)

We are interested in the average overshoot

R(x) := E[(X(τ(x))− c2)+], (4)

where (x−c2)+ := max{x−c2, 0}. This type of quantity arises in the valuation
of path-dependent financial products, such as lookback options or barrier-type
structured products, where the average overshoot models the expected payoff
associated with the underlying crossing a critical level.

For a jump-diffusion process with double exponential jumps, Kou and
Wang [6] derived closed-form expressions for the moment-generating function
of the first-passage time and for the joint distribution of the first-passage
time and the overshoot. They showed that the overshoot is exponentially
distributed, conditional on being positive, and that conditional independence
between the first-passage time and the overshoot can be used to simplify com-
putations.

Yin et al. [8] extended this framework to jumps following a mixed ex-
ponential distribution, also obtaining explicit formulas for the joint moment-
generating function of the first-passage time and the overshoot. In addition,
Klüppelberg et al. [4] investigated Lévy processes with heavy-tailed jumps and
established an explicit asymptotic expression for the overshoot, conditional on
crossing a high level.

These contributions represent some of the few cases where analytical
expressions are available, and they serve as useful benchmarks for the study
of the Cox-Ingersoll-Ross (CIR) process with jumps.

In the next section, the integro-differential equation (IDE) satisfied by
the function R(x) will be derived. Moreover, we will show that when the jump
size Y has an exponential distribution, it is possible to transform the IDE into
an ordinary differential equation (ODE). In Section 3, two particular processes
will be considered: a Wiener process and a CIR process, with exponential
jumps. We will end with a few remarks in Section 4.

2. The general case

First, we will derive the IDE satisfied by the function R(x).

Proposition 2.1. The function R(x) defined in Eq. (4) satisfies the integro-
differential equation

LR(x) = −
∫ ∞

c2−x

(x+ y − c2)fY (y)dy, (5)
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where L is the infinitesimal generator of the jump-diffusion process {X(t), t ≥
0}:

Lf(x) =
1

2
σ2(x)f ′′(x) + µ(x)f ′(x) + λ

∫ ∞

−∞
[f(x+ y)− f(x)]fY (y)dy (6)

for functions f that are twice differentiable with continuous second derivative.
The equation is valid for x ∈ (c1, c2). The boundary conditions are R(c1) =
R(c2) = 0.

Proof. Let f(x) := (x− c2)+ = max{x − c2, 0}. Then, by applying Dynkin’s
formula (see [3]), we obtain

E[f(X(τ(x)))] = f(x) + E

[∫ τ(x)

0

Lf(X(s))ds

]
. (7)

For x ∈ (c1, c2), we have f(x) ≡ 0, which implies that

Lf(x) = λ

∫ ∞

−∞
f(x+ y)fY (y)dy = λ

∫ +∞

c2−x

(x+ y − c2)fY (y)dy. (8)

The average overshoot is then given by

R(x) := E
[
(X(τ(x))− c2)+

]
= E[f(X(τ(x)))] = E

[∫ τ(x)

0

U(X(s))ds

]
, (9)

with U(x) defined as follows:

U(x) = λ

∫ ∞

c2−x

(x+ y − c2)fY (y)dy. (10)

Finally, Abundo [1] has shown that R(x) satisfies

LR(x) = −U(x), (11)

with R(c1) = R(c2) = 0. □

Remark 2.1. The mathematical expectation in the definition of the function
R(x) is only of interest in the case when x ∈ (c1, c2). For x /∈ (c1, c2), we set
R(x) = 0. Since the jumps are positive, we can write that R(x) = 0 for x ≥ c2.

Next, we consider the case when the random variable Y is exponentially
distributed.

Proposition 2.2. Suppose that the jump size Y has an exponential distribution
with parameter θ; that is,

fY (y) = θe−θy for y > 0 (12)

Then the function R(x) satisfies the linear third-order ODE

σ2(x)R′′′(x) + {2µ(x) + σ(x)[2σ′(x)− θσ(x)]}R′′(x)

−2[λ− µ′(x) + θµ(x)]R′(x) = 0, (13)

subject to R(c1) = R(c2) = 0.
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Remark 2.2. (i) Notice that Eq. (13) is actually a second-order ODE for
R′(x). (ii) We assume that the functions µ(x) and σ(x) are differentiable. (iii)
We need a third condition on the function R(x) to obtain a unique solution
to the differential equation. (iv) The boundary conditions in the proposition
are valid if the boundaries at c1 and c2 are both attainable. For example, if
the continuous part of the jump-diffusion process {X(t), t ≥ 0} is a geometric
Brownian motion, then the origin is unattainable.

Proof. The IDE in Eq. (5) becomes

1

2
σ2(x)R′′(x) + µ(x)R′(x) + λ

∫ c2−x

0

R(x+ y)θe−θydy − λR(x) = −λ
θ
eθ(x−c2).

(14)
That is,

1

2
σ2(x)R′′(x) + µ(x)R′(x) + λ∆(x)− λR(x) = −λ

θ
eθ(x−c2), (15)

where

∆(x) := θeθx
∫ c2

x

R(z)e−θzdz. (16)

From Eq. (15), we have

λ∆(x) = −1

2
σ2(x)R′′(x)− µ(x)R′(x) + λR(x)− λ

θ
eθ(x−c2), (17)

and we calculate

∆′(x) = θ [∆(x)−R(x)] . (18)

Hence, differentiating Eq. (15), we find (after simplification) that

1

2
σ2(x)R′′′(x) +R′′(x)

{
µ(x) +

1

2
[σ2(x)]′ − θ

2
σ2(x)

}
+R′(x) [µ′(x)− λ− θµ(x)] = 0. (19)

As in Proposition 2.1, the boundary conditions are R(c1) = R(c2) = 0, which
follows at once from the definition of the function R(x). □

In the next section, Eq. (13) will be solved explicitly in the case when
the continuous part of {X(t), t ≥ 0} is a particular Wiener process, and also
when it is a particular CIR process.

3. Particular cases

Let us denote by {Xc(t), t ≥ 0} the continuous part of {X(t), t ≥ 0}.
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3.1. The Wiener process

The first particular case that we consider in the one when Eq. (1) is given
by

X(t) = X(0) + µt+ σW (t) +

N(t)∑
k=1

Yk, (20)

where µ ∈ R and σ > 0. Then, {Xc(t), t ≥ 0} is a Wiener process with drift µ
and dispersion parameter σ. The third-order ODE (19) becomes

σ2R′′′(x)−
(
θσ2 − 2µ

)
R′′(x)− 2(λ+ µθ)R′(x) = 0, (21)

whose closed-form solution exists, but is rather involved. Therefore, we will
consider a special case.

Setting µ = λ = θ = 1 and σ =
√
2, we obtain

R′′′(x)− 2R′(x) = 0. (22)

We take c1 = 0 and c2 = 1. In addition to the boundary conditions R(0) =
R(1) = 0, we impose a third condition: R(1/2) = r, where r is to be deter-
mined. We then find the following solution to Eq. (22):

R(x) = −r csch2

(
1

2
√
2

)
sinh

(
x− 1√

2

)
sinh

(
x√
2

)
. (23)

Substituting the above function into the integro-differential equation (11), we
can find the value of the constant r. The final solution is

R(x) = −
2 sinh

(
x−1√

2

)
sinh

(
x√
2

)
√
2 sinh

(
1√
2

)
+ 2 cosh

(
1√
2

) . (24)

Remark 3.1. In the general case, we can use a mathematical software package
such as Maple to find (numerically) the value of r.

To confirm the above expression for the function R(x), we ran simulations
of the overshoot for two values of the parameter λ, and we compared them to
the exact function; see Figures 1 and 2. The simulation results clearly agree
with the theoretical findings.

3.2. The Cox-Ingersoll-Ross process

Next, we assume that Eq. (1) takes the form

X(t) = X(0) +

∫ t

0

a[b−X(s)] ds+

∫ t

0

σ
√
X(s) dW (s) +

N(t)∑
k=1

Yk. (25)

This time, {Xc(t), t ≥ 0} is a CIR process. The third-order ODE (19) becomes

σ2xR′′′(x)+R′′(x)
[
2a(b−x)+σ2−θσ2x

]
−2R′(x)

[
aθ(b−x)+a+λ

]
= 0. (26)
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Figure 1. Exact function R(x) for the particular Wiener pro-
cess with jumps considered.
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Figure 2. Simulation results for the particular Wiener process
with jumps considered.

We will treat a special case, namely the one when a = 0, so that

xR′′′(x)− (θx− 1)R′′(x)− 2
λ

σ2
R′(x) = 0. (27)

The above ODE is a Kummer equation for R′(x). Its general solution is known
to be (see [7])

R′(x) = k1Φ

(
2λ

θσ2
, 1,

x

θ

)
+ k2Ψ

(
2λ

θσ2
, 1,

x

θ

)
, (28)

where k1 and k2 are constants, and Φ(·, ·, ·) and Ψ(·, ·, ·) are confluent hyper-
geometric functions of the first and second kind, respectively.
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Integrating Eq. (28), we obtain (assuming that θσ2 ̸= 2λ)

R(x) = k1xΦ

(
2λ

θσ2
, 2,

x

θ

)
+ k2

θ2σ2

θσ2 − 2λ
Ψ

(
2λ

θσ2
− 1, 0,

x

θ

)
+ k3. (29)

Now, with a = 0, the origin is attainable. We set c1 = 0 and c2 ≡ c.
Then, making use of the boundary conditions R(0) = R(c) = 0 and the third
condition R(c/2) = r, we can determine the three constants and obtain the
final form of the solution:

R(x) =
2r

{
k0xϕ(x) + cϕ(c)

[
xΓ

(
2λ
θσ2

)
ψ(x)− θ

]}
c
{
k0ϕ

(
c
2

)
+ ϕ(c)

[
cΓ

(
2λ
θσ2

)
ψ( c

2
)− 2θ

]} , (30)

with ϕ(z), ψ(z) and k0 defined as follows:

ϕ(z) = Φ

(
2λ

θσ2
, 2,

z

θ

)
,

ψ(z) = Ψ

(
2λ

θσ2
, 2,

z

θ

)
,

k0 = θ − cΓ

(
2λ

θσ2

)
ψ(c),

(31)

where Γ(·) is the gamma function.
Finally, choosing numerical values for θ, λ, σ and c, we can try to use

Eq. (11) to solve for r and hence obtain an exact solution. When θ = λ = σ =
c = 1, we find that

R(x) = xex [Ei(−1)− Ei(−x)] , (32)

where Ei(x) is the exponential integral function defined by

Ei(x) = −
∫ ∞

−x

e−t

t
dt =

∫ x

−∞

et

t
dt. (33)

As in the case of the Wiener process with jumps, we ran simulations to
confirm our results; see Figures 3 and 4. Again, the simulation results agree
with the theoretical findings. Moreover, the effect of a larger jump rate λ is
also observed.

Remark 3.2. In [2], Bondarenko introduced a new class of path-dependent
options called crossover (CO) options. These contracts are defined in relation
to a barrier K and their payoff increments every time the underlying crosses
over the threshold (whether from above or below). Thus, the payoff is entirely
built from overshoot quantities.

Our work provides explicit characterizations of the expected overshoot for
one-dimensional jump-diffusion processes above a critical level, in particular
R(x) = E [(X(τ(x))− c2)+] (the same can be done for a lower threshold in case
of downwards jumps). In this sense, our framework complements the theory
of CO options by offering analytical tools for evaluating their payoff in models
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Figure 3. Exact function R(x) for the particular CIR process
with jumps considered.
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Figure 4. Simulation results for the particular CIR process
with jumps considered.

with jumps. It provides closed-form or semi-closed-form expressions for the
expected overshoot, which directly enters into the valuation of CO options.

4. Conclusion

In this paper, we have investigated the overshoot of a jump-diffusion pro-
cess at the first-exit time from an arbitrary interval. In the general case, we
have derived an integro-differential equation governing the average overshoot
above the upper boundary of the interval. Then, in the case of exponentially
distributed jumps, the problem was reduced to solving a third-order linear or-
dinary differential equation. We applied this framework to Wiener and CIR
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processes with jumps, and we obtained closed-form solutions in special cases.
Furthermore, the theoretical findings were confirmed through numerical simu-
lations.

The results that we obtained provide analytical tools that can be applied
in the general theory of stochastic processes or in mathematical finance, where
this type of quantity arises in the valuation of path-dependant barrier or look-
back structured products. Future works could extend this approach to other
diffusion dynamics, such as geometric Brownian motion, and/or incorporate
downward jumps, as in the jump-diffusion model considered by Kou [5].
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Abstract: 
Over the time, various teaching methods have been proposed, studied, applied and improved. In this article I want to 
present the application of the discovery method in real life: discovering the math behind a magic card trick. Using this 
teaching method, students must discover the concepts themselves, discover formulas, mathematical rules. The students 
do not discover something that has not been studied before, but for them it represents a novelty, which will be discovered 
in the classroom, organized and supervised by the teacher. The purpose of this article is to explore the subtle connections 
between mathematics and magic, through a practical example that show how mathematical structures can generate 
"magical" effects. 

Abstract: 
De-a lungul timpului, au fost propuse, studiate, aplicate și îmbunătățite diverse metode de predare. În acest articol vreau 
să prezint aplicarea algoritmului metodei descoperirii în viața reală: descoperirea matematicii din spatele unui truc magic 
cu cărți. Folosind această metodă de predare, elevii trebuie să descopere singuri conceptele, să descopere formule, reguli 
matematice. Elevii nu descoperă ceva ce nu a mai fost studiat anterior, doar pentru ei reprezintă o noutate, care va fi 
descoperită în sala de clasă, în formă organizată și supravegheată de profesor. Scopul acestui articol este de a explora 
legăturile subtile dintre matematică și magie, printr-un exemplu practic care să arate cum structurile matematice pot 
genera efecte „magice”. 

Key words: mathematics, discovery method, magic trick, problem solving, real life 

De-a lungul istoriei, matematica a fost privită nu doar ca o știință a rațiunii și a logicii, ci și un 
domeniu capabil să dezvăluie ordinea universului. Matematica reușește să descrie fenomene aparent 
inexplicabile printr-un limbaj abstract, dar riguros, transformând necunoscutul într-un sistem coerent 
de reguli. De-a lungul istoriei până în zilele noastre, civilizațiile s-au dezvoltat folosind matematica. 
La polul opus, magia reprezintă o practică simbolică și imaginară ce caută să ofere o punte între 
vizibil și invizibil, între concret și transcendent. Trucurile „magice” cu cărți nu sunt doar iluzii 
vizuale, ci și demonstrații ingenioase de matematică aplicată, pentru a distra auditoriul, pentru a 
produce surpriză, suspans și chiar iluzia de imposibil. Scopul acestui articol este de a explora 
conexiunile subtile dintre matematică și magie, printr-un exemplu practic, un truc „magic” cu cărți 
de joc, integrat unei lecții de matematică. 
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Predarea unei lecții reprezintă un proces creativ, creat de profesor, luând în considerare programa 
care trebuie urmată, planificarea concepută, metodele, mijloacele și resursele adecvate elevilor cărora 
le este destinată, cu scopul de a atinge obiectivele lecției și de a forma elevilor abilitățile dorite, la cel 
mai înalt nivel, în modul cel mai eficient posibil. Dintre metodele de predare, cea care oferă elevilor 
atât autonomie, cât și încredere în sine este metoda descoperirii. Succesul pe care îl simt atunci când 
reușesc să finalizeze o problemă le crește stima de sine, creativitatea, gândirea critică și capacitatea 
de a rezolva probleme pe parcursul întregii vieți. 

Aplicarea algoritmului metodei descoperirii începe înainte de lecția propriu-zisă, cu selectarea 
problemei de studiat. Problema este întotdeauna derivată dintr-un context real. Determinarea 
strategiei de abordare a problemei revine în sarcina profesorilor școlii ce trebuie să ia în considerare 
elevii cărora li se adresează. Problema trebuie aleasă cu atenție, astfel încât să poată fi rezolvată de 
toți elevii, inclusiv de cei cu performanțe mai scăzute. De asemenea, trebuie selectată astfel încât să 
faciliteze soluții diverse și o formă de generalizare. Este de dorit să se ofere cât mai puține detalii, 
pentru a permite elevilor să ajungă la propriile soluții prin gândire proprie, în acest fel elevii își vor 
crea metode personale de reflecție. Strategia de abordare a problemei necesită răbdare și atenție, 
deoarece trebuie să se alinieze cu modul de gândire al elevilor. Elaborarea planului de aplicare a 
metodei descoperirii reprezintă o etapă de discuții și negocieri între profesorii școlii în care se 
hotărăsc asupra unui plan unitar pentru toate clasele la care vor prezenta problema aleasă și pașii de 
urmat în timpul lecției,  ceea ce rezultă în elaborarea proiectului didactic al lecției. Atunci când se 
elaborează un plan de lecție, resursele didactice necesare sunt alese cu mare atenție. Nu doar că 
problema prezentată pentru soluționare ar trebui să fie legată de cunoștințele lor anterioare, dar din 
aceasta elevii ar trebui să dobândească și noi cunoștințe funcționând astfel ca  o conexiune între ceea 
ce știau și ceea ce vor învăța în sesiunile viitoare.  

O dată ce toate detaliile sunt decise, planul de lecție se poate aplica. Prima parte a lecției debutează 
cu prezentarea problemei, a contextului din care a fost luată, setarea cadrului real din care face parte, 
precum și ce li se cere elevilor, ce înseamnă exact să rezolve problema. După ce profesorul răspunde 
eventualelor întrebări ale elevilor, urmează realizarea activității individuale, o perioadă de lucru 
independent, perioadă în care elevii reflectă asupra cerințelor și se străduiesc să găsească soluții. 
Profesorul își notează care dintre elevi au rezolvări obișnuite, mai des întâlnite, care elevi au făcut 
greșeli, și care au rezolvări originale. După trecerea timpului alocat acestei etape, profesorul conduce 
etapa de discutare în plen a metodelor de soluționare a problemei. Elevii sunt invitați să prezinte la 
tablă soluțiile descoperite. Profesorul dă ocazia elevilor să colaboreze și să se ajute reciproc, elevii 
discută, compară soluția lor cu a celorlalți, pot observa diferențele și pot învăța din ele. 
 
În ultimele minute ale lecției profesorul trebuie să realizeze o încheiere a lecției, realizând un rezumat 
a ceea ce s-a prezentat și s-a discutat pe parcursul desfășurării lecției, într-un mod cât mai firesc și 
natural prin evidențierea produsului matematic descoperit. Profesorul prezintă elevilor notațiile 
general valabile, denumește noțiunile teoretice descoperite de elevi, prezintă regula de generalizare 
sau formula căutată. De asemenea se poate evidenția aplicarea produsului descoperit în diferite 
contexte la sugestia profesorului sau a elevilor. Lecția se încheie prin formularea concluziilor și a 
recomandărilor rezultate din activitatea desfășurată, momente în care elevii notează observații în 
caiete sau pe fișele de lucru referitoare la ora recent încheiată. Aceste observații contribuie la 
dezvoltarea gândirii critice a elevilor. Prin examinarea acestor notițe, profesorul poate evalua 
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înțelegerea lecției de către elevi și poate identifica conceptele greșite sau neclarificate care ar putea 
persista. Astfel, el poate începe următoarea lecție prin clarificarea acestor aspecte. 
 
Un exemplu de aplicare a algoritmului de mai sus o reprezintă următorul truc „magic”, care reprezintă 
problema de rezolvat: 
 
Se iau la întâmplare 21 cărți dintr-un pachet de cărți de joc. Un jucător alege o carte pe care 
magicianul nu o vede dar o va „ghici prin magie”. 
 Magicianul distribuie cărțile pe masă, cu fața în sus, în ordine, în trei coloane, astfel încât să 
fie vizibile și identificabile de către jucător, ca în figura de mai jos.  
 Jucătorul indică respectiva coloană, pe cea în care se află cartea aleasă. 
 Magicianul strânge cele trei coloane de cărți, în ordine, plasând coloana cu cartea aleasă la 
mijloc, între celelalte două coloane. 
După 3 astfel de secvențe, magicianul distribuie pe masă cărțile cu fața în jos și „ghicește” cartea 
aleasă de jucător. 

CERINȚE: 

 Explicați matematic trucul magicianului? 
 Care sunt pozițiile posibile ale cărții alese după prima 
secvență de joc? 
 Care sunt pozițiile posibile ale cărții alese după a doua 
secvență de joc? 
 Care sunt pozițiile posibile ale cărții alese după a treia 
secvență de joc?  
 Care este numărul minim de cărți pentru care trucul 
funcționează din trei secvențe? 
 Care este numărul maxim de cărți pentru care trucul 
funcționează din trei secvențe? 
 Ce puteți spune despre n, numărul de cărți? 
 Funcționează trucul pentru n cărți? 
 

Figura 1. Cărți de joc distribuite în trei coloane  

  

Explicația trucului este una matematică: prin distribuirea în trei coloane a cărților, se restrâng pozițiile 
în șirul de cărți. După prima secvență de joc, din douăzeci și unu de poziții posibile, se restrâng la 
doar șapte, de la 14 la 8, în ordine descrescătoare. După cea de-a doua secvență de joc, pozițiile 
posibile se restrâng mai mult, la doar trei, de la 12 la 10. După cea de-a treia secvență, poziția posibilă 
a cărții este una singură, cea din mijloc, adică a unsprezecea. De exemplu, în figură, jokerul se află 
pe poziția a șaptea, iar cartea trei de inimă roșie se află pe poziția a opta. 

 

Trucul funcționează pentru mai multe variante ale lui n, pentru n cărți de joc, unde n este multiplu 
impar de 3. În acest caz, după prima secvență de joc, pozițiile posibile ale cărții sunt de la  2𝑛𝑛

3
   la 

𝑛𝑛
3

+ 1, în ordine descrescătoare. După a doua secvență de joc, pozițiile posibile ale cărții sunt 𝑛𝑛−1
2

, 
𝑛𝑛+1
2

  sau  𝑛𝑛+3
2

 . După a treia secvență de joc, singura poziție posibilă va fi  𝑛𝑛+1
2

. 
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În cazul în care profesorul dorește să aplice acest truc unor elevi de vârstă mai mică, acesta 
funcționează și cu nouă cărți. Cartea ajunge pe poziția, unică, a cincea, după doar două secvențe de 
joc. 

 

În cazul în care elevii doresc să exploreze mai mult matematica din spatele trucului, se pot formula 
alte întrebări cum ar fi: 

o Care este valoarea maximă pe care o poate lua n pentru ca jocul să funcționeze din exact 3 
secvențe? 

o Care sunt valorile pe care le poate lua n pentru ca jocul să funcționeze din exact 4 secvențe? 

o Care sunt valorile pe care le poate lua n pentru ca jocul să funcționeze din exact s secvențe? 

  

Atunci când magicianul „ghicește” cartea sau „prezice” rezultatul, auditoriul trebuie să știe faptul că 
există o explicație logică. Trucul nu este magic, este o demonstrație elegantă, distractivă și subtilă a 
matematicii în realitate. Pornind de la experiențele trăirii trucurilor, elevii pot fi interesați să 
descopere, să înțeleagă ceea ce se întâmplă în spatele magiei. Astfel magia devine doar un instrument 
de aplicare distractivă a matematicii, stimulând motivația și interesul pentru studiul acestei discipline. 

 

Deși, la o primă vedere, magia și matematica par să nu aibă nimic în comun, descoperim încă un 
domeniu în spatele căruia se află matematica. Folosind metoda descoperirii, elevii își îmbunătățesc 
abilitățile matematice, își dezvoltă gândirea logico-matematică, ajută la crearea unei atitudini pozitive 
către această disciplină.  
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Abstract 
The purpose of this paper is to analyse the architecture of a hybrid library, which is regarded as an automated 
system meant to combine digital and physical resources with artificial intelligence technologies. Some 
examples of comprehensive features include adaptive search, user behaviour understanding, built-in 
recommendations, and robotic assistance. These can transform conventional library functions into dynamic and 
responsive ones, appropriate for current information environments. Therefore, certain algorithms are integrated, 
including content recommendation, real-time assessment, and feedback. The proposed application will focus on 
pathfinding and optimization algorithms, using an SQL database to manage and retrieve information. The outcome of 
the entire process consists of simplified access to specific knowledge, reduced workload, and motivation for self-
directed learning, which is achieved through real-time booking and availability. 
Key words: Automation; Digitalization; Pathfinding Algorithms; SQL Data Base; Content-Based Filtering; 
Collaborative Filtering; Data Processing 

1. INTRODUCTION
The digital era can be traced back to early radio broadcasts and the first television flickering

images, and it marked a turning point in how people interacted with the outside world. However, the 
implementation was gradual, starting with the progressive computerization of workplaces and 
schools. This stage was followed by the creation of software systems adapted to the requirements of 
each institution, initially accessible only to well-funded organizations and governments, and 
subsequently, they have become affordable and widely used.  

The main purpose of this paper is to design a high-performance network between physical and 
virtual spaces, preserving the advantages of both. Therefore, to satisfy the demands of users, a model 
is proposed in the form of a hybrid library, which combines physical collections with digital 
resources. Methods such as binary search and sorting algorithms [1,2] are fundamental to processing, 
organizing, and accessing information more easily, and allowing fast data retrieval, indexing, and 
classification of distinct items that can be physical documents or digital formats. Additionally, within 
the hybrid library, there is an autonomous robot capable of physical delivery by using the A* 
pathfinding algorithm, accompanied by sensors, to detect obstacles [4]. 

2. CONTENT
The COVID-19 pandemic represents a historic change from two perspectives: human interactions

and the way society functions. In the context of lockdowns and social distancing, social media 
platforms have become the only way to connect. This period has faced multiple challenges, including 
job losses caused by unequal access to technology, exposure to cybersecurity risks, and the need for 
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digital literacy. At the same time, it revealed opportunities that have ever since become standards in 
everyday life. 

Conventional libraries have considerable limitations, and this model aims to provide a solution 
by combining the attributes from the physical and digital spaces. Due to all the tasks being done 
manually, there are multiple shortcomings, such as space constraints, low efficiency, slower 
information retrieval, and resource sharing risks. The system's goal is to automate cataloguing and 
indexing, user authentication and access control, search, lending, and return. Moreover, it has the 
objective of reducing the time spent looking for specific content and academic resources while also 
allowing real-time access. 

The robot prototype is based on a movable frame with two electric motors, which allow it to 
navigate inside the library. Book handling is carried out using a robotic arm equipped with a gripper 
and a pressure sensor to prevent any damage to the books. Upon completing its task, the robot 
automatically returns to a charging station. To ensure the proper operation of the robots used to deliver 
and retrieve documents, the hybrid library is structured as a graph, allowing the implementation of 
these complex and specialized algorithms: 
 

• Document Retrieval and Search Logic: this algorithm checks if the requested document 
exists in the physical database. If found, its location is being added to the robot's path; 
otherwise, it searches for the digital format. The output depends on existing physical or digital 
documents. 

 
• A* Path with Document Collection: the robot's path is based on the A* search technique [3] 

an analysis algorithm that uses a heuristic function to allocate the optimal path in a graph 
 

• Recommendation Process: the last algorithm recommends similar documents if the 
requested one is neither physically nor digitally available. It lists the top 3 documents by the 
same author and the top 3 documents in the same genre, based on popularity. The popularity 
system uses two primary criteria: content-based filtering and collaborative filtering. 

 
3. CONCLUSIONS 

The integration of digitalization in educational environments has transformed the way 
information is accessed, stored, and shared. Libraries have evolved into hybrid spaces and 
environments that support academic research by merging physical collections with digital resources. 
The transition not only improves accessibility and productivity but also enriches user experience by 
providing customized assistance and instant access to documents. 

For future improvements, a customized database is proposed for each user in which data related 
to their behaviour on the platform will be stored. At the end of each month, a report will be formed 
summarizing the activity (preferred authors, favourite topics, preferred format type) and suggestions. 
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Abstract 

Even though digitization has highly advanced education, many students still find it difficult to organize their study 
materials, including notes, publications, websites, and educational platforms, in one convenient location. Because of 
this lack of centralization, they frequently require artificial intelligence-based solutions, which are helpful but don’t 
always offer reliable or correct information. In response to this need, our goal is to provide an integrated learning 
environment with an AI-powered platform (AIP). This AIP has three significant characteristics: learning, training, and 
assessment. Thus, it will allow easy access to documents, generating summaries, customized learning, and evaluation. 
Additionally, teachers and tutors will be able to track students’ progress, identify groups at risk of low performance, 
and set important deadlines. To achieve this initiative, we combine theoretical research with data obtained through a 
questionnaire applied to students, focusing on study habits, exam preparation methods, and use of artificial intelligence 
(AI). 

Key words: Artificial Intelligence, education, personalized learning, accessibility, digital platform. 

1. INTRODUCTION
Education has undergone constant changes when it comes to digitalization. However, students often
face challenges to organize and access their study materials in one place. During their study they have
a variety of resources they use simultaneously, such as course notes, articles, websites, or external
platforms. Thus, students are tempted to turn to AI, this being one of the few places where information
can be found in one place. However, AI often generates unverified or inaccurate information. It is a
useful tool, but it’s frequently misused [1].

2. CONTENT
Our goal is to create a space where AI is used in an educational way through various facilities. The
AIP is assisted by artificial intelligence and organizes, sorts, and structures learning materials for
students, generating information for each subject they choose to study. AI filters each document, and
students can request instant summaries, personalized learning plans, quizzes, and other exercises to
support their learning process. In addition, the AIP supports the installation of various browser
extensions that enhance the learning experience across multiple resources. These include grammar
and style correction tools, which help students and teachers generate explanatory texts, essays, or
create test questions. Productivity and time-management extensions assist in organizing schoolwork
and managing schedules effectively, offering intelligent suggestions for prioritizing tasks and
optimizing time allocation. Other extensions support language learning by providing automatic
translations and vocabulary recommendations. To make learning more accessible, text-to-speech
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extensions read aloud the content on a page, which is especially useful for students with reading 
difficulties or visual impairments. Accessibility tools allow users to adjust contrast, text size, and 
other display features to facilitate reading for those with visual or learning disabilities. Teachers also 
benefit from extensions that analyze student responses, such as essays or tests, and provide 
personalized feedback, helping them save time and identify each student’s strengths and weaknesses 
more effectively. To achieve this goal, we combine theoretical research with primary data collection. 
We analyze existing academic articles that examine students’ behavior in a digitalized era. We study 
students’ learning habits, compare the results, and design an AIP that generates summaries of course 
content, sorts information, suggests study plans, and supports the learning process through exercises 
and quizzes [2]. 
 
3. CONCLUSIONS  
Following this study, we aim to enhance learning methodology, increase student engagement, and 
evaluate as well as improve current learning methods and platforms. The proposed AI-powered 
platform (AIP) contributes to a more organized and personalized educational process, offering both 
students and teachers intelligent tools that simplify study management, feedback, and accessibility 
[3]. Moreover, the integration of artificial intelligence into education encourages the development of 
digital skills and critical thinking, preparing students for the technological demands of the modern 
world. 
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Abstract 

In this work, we study the stability region of a new class of fractional generalized multidimensional state-space systems 
described by the Roesser model. The analysis aims to determine the sufficient conditions, in a specific region of the 
complex plane, to guarantee the desired stability properties of the system under consideration. Numerical examples are 
provided to illustrate the validity and effectiveness of the proposed results. 

Key words: Fractional calculus; fractional dD systems; Stability Region ; Linear Matrix Inequalities. 

1. INTRODUCTION

Fractional multidimensional systems have gained much interest in recent years because they can 
describe complex dynamic systems that include memory and interactions between different 
variables. These systems are an extension of classical models to fractional orders, which makes 
them more flexible and accurate for representing real processes. Studying such systems is important 
for understanding their stability and for improving control performance in practical applications. 

In dynamic systems, stability depends on the location of the poles in the complex plane. Some 
systems are naturally stable because their poles lie inside a stability region, which allows them to 
resist small changes or disturbances. Other systems have poles close to the boundary of the stability 
region, so even a small perturbation can move them outside this region and make the system 
unstable. 

In this context, the study of the stability region becomes essential to determine where the system 
poles are located in the complex plane and to ensure that the system remains stable under different 
conditions. Numerous efforts have been dedicated to the development of stability criteria. 
Motivated by the work of D. Bouagada and P. Vandooren (2006), the present study focuses on 
analyzing the stability region of fractional multidimensional systems described by the Roesser 
model and on providing sufficient conditions to guarantee their stability. 

2. PRELIMINARIES

In the following, we introduce a general formulation of multidimensional dD fractional continuous- 
time systems described by the Roesser model 

Kα1,⋯,αdEdXd(t1,⋯ , td) = AdXd(t1,⋯ , td) + Bdud(t1,⋯ , td) 
yd(t1,⋯ , td) = CdXd(t1,⋯ , td) + Ddud(t1,⋯ , td) 1
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where, 

𝐸𝐸𝑑𝑑 = �
𝐸𝐸11 ⋯ 𝐸𝐸1𝑑𝑑
⋮ ⋱ ⋮
𝐸𝐸𝑑𝑑1 ⋯ 𝐸𝐸𝑑𝑑𝑑𝑑

� ∈ ℝ 𝑛𝑛×𝑛𝑛, which be assumed invertible. 

 

𝐴𝐴𝑑𝑑 = �
𝐴𝐴11 ⋯ 𝐴𝐴1𝑑𝑑
⋮ ⋱ ⋮
𝐴𝐴𝑑𝑑1 ⋯ 𝐴𝐴𝑑𝑑𝑑𝑑

� ∈ ℝ 𝑛𝑛×𝑛𝑛, is the dynamic matrix. 

 

𝐵𝐵𝑑𝑑 = �
𝐵𝐵1
⋮
𝐵𝐵𝑑𝑑
� ∈ ℝ 𝑛𝑛×𝑚𝑚, is the control matrix. 

 
𝐶𝐶𝑑𝑑  =  [𝐶𝐶1,⋯ ,𝐶𝐶𝑑𝑑] ∈ ℝ 𝑝𝑝×𝑛𝑛, is the output matrix 
 
𝐷𝐷𝑑𝑑 ∈ ℝ 𝑝𝑝×𝑚𝑚, is the transmission matrix 
 

𝑋𝑋𝑑𝑑 = �
𝑥𝑥1(𝑡𝑡1,⋯ , 𝑡𝑡𝑑𝑑)

⋮
𝑥𝑥𝑑𝑑(𝑡𝑡1,⋯ , 𝑡𝑡𝑑𝑑)

� ∈ ℝ 𝑛𝑛, represent the state of the sub-vectors, 

 

𝐾𝐾𝑑𝑑
𝛼𝛼1,⋯,𝛼𝛼𝑑𝑑 = �

𝜆𝜆1
𝛼𝛼1𝐼𝐼𝑛𝑛1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑑𝑑

𝛼𝛼𝑑𝑑𝐼𝐼𝑛𝑛𝑑𝑑
� ∈ ℝ 𝑛𝑛×𝑛𝑛, represent matrix of differentials operators 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖=1𝑑𝑑  𝑠𝑠𝑖𝑖
𝛼𝛼1𝐼𝐼𝑛𝑛𝑖𝑖 in the Laplace transform when (1) in the continuous-time and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖=1𝑑𝑑  𝑧𝑧𝑖𝑖

𝛼𝛼1𝐼𝐼𝑛𝑛𝑖𝑖 is the Z-
transform when (1) in the discrete-time. 
 
𝑢𝑢(𝑡𝑡1,⋯ , 𝑡𝑡𝑑𝑑) ∈ ℝ 𝑚𝑚, is the input vector. 
 
𝑦𝑦(𝑡𝑡1,⋯ , 𝑡𝑡𝑑𝑑) ∈ ℝ 𝑝𝑝, is the output vector. 
 
 
3. CONCLUSIONS  
 
In this work, we constructed a new  𝒟𝒟d-region in the complex plane, formulated through Linear 
Matrix Inequalities (ℒℳ𝔩𝔩 s). This region defines where the poles of the system should be located to 
ensure stability. Based on this formulation, we derived sufficient conditions that guarantee the 
stability of the fractional multidimensional system within the proposed region. Finally, several 
numerical examples were presented to demonstrate the validity and effectiveness of the obtained 
results. 
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Uncertainty-Aware Dynamic Cost Maps for Real-Time
Autonomous Navigation — Extended Abstract

1. Introduction and Motivation

Autonomous navigation in dynamic and uncertain environments remains one of the most

challenging problems in robotics. Traditional planners rely heavily on deterministic cost maps

that assume perfect sensor accuracy and static surroundings. In practice, however, perception

noise, occlusions, and rapidly changing elements such as vehicles, pedestrians, and traffic lights

continuously distort the environment’s representation. When uncertainty is ignored, these

distortions propagate downstream—leading to erratic planning behavior, unsafe motion, and

brittle performance under real-world conditions. This work introduces a probabilistic framework

for dynamic cost mapping and uncertainty-aware control. The method fuses heterogeneous

sensory information into a unified spatial potential field that captures both the expected traversal

cost and its associated uncertainty. By diffusing this probabilistic field and using its gradients as

the substrate for control and reinforcement learning, the system achieves smooth, interpretable,

and computationally efficient motion even on low-power embedded platforms.

2. Probabilistic Field Construction

### 2.1 Environment Representation The environment is modeled as a 2D lattice, where each

grid cell stores an expected cost value and an uncertainty estimate. Static factors include

geometric and regulatory information such as curvature, lane topology, and stop-line positions.

Dynamic factors arise from real-time perception: moving objects, pedestrian heatmaps, and

traffic-light states. Each is treated as a stochastic feature represented by a Gaussian variable

with mean and variance estimated online. ### 2.2 Precision-Weighted Fusion To integrate

multiple uncertain features into a single coherent map, a precision-weighted fusion operator is

employed. Each feature contributes proportionally to its reliability, so high-confidence detections

dominate while noisy or ambiguous inputs are naturally down-weighted. This process produces a

dynamic cost field that explicitly encodes uncertainty and remains robust under perception errors

or partial observability. ### 2.3 Diffusion-Based Regularization The fused field may contain

discontinuities due to sensor sparsity or asynchronous updates. A diffusion step, implemented as

Gaussian convolution, enforces spatial coherence and ensures the field is differentiable and

smooth. High-cost regions (obstacles, occupied zones) act as repulsive potentials, while low-cost

goal regions form attractive basins. The diffusion guarantees Lipschitz continuity, which

stabilizes gradient-based control and ensures well-behaved vector fields across the environment.

3. Reinforcement Learning over Diffused Fields

### 3.1 Local Patch Encoding The navigation policy does not operate on the full global map.

Instead, it receives an ego-centric local field patch, centered on the vehicle’s position and aligned

with its heading. This patch is normalized and resampled to a fixed grid size, preserving relative

gradients and reward structures while maintaining invariance to absolute cost scale. ### 3.2
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Discrete Control Policy A lightweight reinforcement learning (RL) controller governs vehicle

behavior. The policy observes the local field patch and the current state vector—position,

velocity, heading, and curvature—and outputs small discrete increments in acceleration and

curvature. This discretization simplifies training, guarantees physical feasibility, and enhances

interpretability of the learned behavior. The policy is trained using Proximal Policy Optimization

(PPO). The reward signal is derived directly from the potential field, encouraging motion along

descending gradients while penalizing excessive curvature and acceleration. During deployment,

a safety projection layer clips infeasible actions and enforces adherence to physical and

environmental constraints. The final actions are passed to a spline-based trajectory generator,

which interpolates them into continuous motion commands executable by the vehicle’s low-level

controller.

4. Real-Time Implementation and Performance

The proposed framework is designed for embedded real-time operation. Field fusion, diffusion,

and reward updates are computed at 10–20 Hz, while the control policy operates at 50 Hz with

an average end-to-end latency below 15 ms. All computations are performed on a Raspberry Pi

5 CPU without GPU acceleration, and the neural policy occupies less than 1 MB of memory. This

efficiency stems from two design choices: (1) separable Gaussian kernels for the diffusion

operator, which reduce complexity to linear in map size, and (2) small, fixed-size field patches for

inference, which allow constant-time policy evaluation regardless of global map dimensions.

Together, these enable high-frequency updates and deterministic timing guarantees, critical for

closed-loop control in real systems.

5. Discussion and Contributions

This work introduces three core contributions to uncertainty-aware navigation: 1. Probabilistic

Cost Fusion — a principled approach to combining uncertain perceptual evidence via

precision-weighted estimation, ensuring consistent propagation of uncertainty. 2. Diffused

Potential Representation — a mathematically grounded smoothing process that converts noisy

cost maps into continuous differentiable fields with well-defined gradients. 3. Field-Aware

Reinforcement Learning — a discrete-action policy architecture that interprets potential-field

structure to make safe, smooth, and efficient motion decisions in real time. These components

collectively yield a navigation pipeline that is interpretable, data-efficient, and robust to noise,

bridging the gap between perception-driven mapping and control-theoretic planning.

6. Conclusion and Future Work

This research establishes a unified probabilistic foundation for dynamic cost maps in

autonomous navigation. By modeling each perception-derived layer as a stochastic observation

and fusing them under uncertainty, the framework captures both the spatial and epistemic

structure of the driving environment. Through Gaussian diffusion, these maps become

continuous potential fields suitable for smooth gradient-based control. When paired with a

lightweight RL controller, the result is a real-time system that balances interpretability,

adaptability, and computational efficiency. Future work will focus on multi-agent interactions,
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active uncertainty minimization, and large-scale testing in simulation environments such as

CARLA or Gazebo. The principles outlined here—precision-weighted fusion, field diffusion, and

field-aware reinforcement learning—provide a strong theoretical and practical foundation for

scalable, uncertainty-aware autonomy.
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Abstract 
The increasing utilization of online learning platforms has given rise to novel challenges in the analysis and management 
of student attrition.  The present paper proposes a predictive model for evaluating the likelihood of course desertion. This 
model utilizes behavioral and academic markers, including login frequency, duration on the platform, assessment scores, 
and interaction patterns.  The model utilizes supervised machine learning methodologies, including Logistic Regression, 
Random Forest, and Naïve Bayes, to identify critical variables that determine persistence in e-learning environments.  A 
mathematical framework is employed to select features and estimate probabilities. This framework is designed to enhance 
the interpretability and accuracy of the model.  Statistical indicators such as accuracy, recall, and ROC-AUC are 
employed to evaluate performance.  The present study focuses on two primary areas: the algorithmic optimization of the 
prediction process and the mathematical underpinnings of the aforementioned process. Insights gained from this study 
offer significant potential for the development of early intervention tactics that promote student retention. 

Key words: E-learning, machine learning, probability modeling, Logistic Regression, Random Forest, Naïve Bayes, 
mathematical modeling, feature selection, algorithmic optimization. 

1. INTRODUCTION
The accelerated growth of digital education has profoundly altered the manner in which individuals’ 
access and engage with knowledge. The advent of Massive Open Online Courses (MOOCs) and 
institutional e-learning systems has precipitated a democratization of education, yet concomitantly 
engendered a substantial predicament: the prevalence of high attrition rates. It is imperative to 
comprehend the elements that contribute to student disengagement to enhance the efficacy of course 
design, retention strategies, and overall learning outcomes. In this regard, predictive modeling 
emerges as a pivotal analytical instrument for identifying students who are at risk of withdrawing 
from their courses.
Machine learning algorithms can quantify the probability of abandonment and identifying the 
variables most strongly associated with persistence by leveraging behavioral and performance data. 
This approach serves to establish a connection between data-driven insights and pedagogical 
interventions. From a mathematical and algorithmic perspective, the present study explores the 
construction of predictive models using classification techniques such as Logistic Regression, 
Random Forest, and Naïve Bayes.
The analysis of these methods encompasses not only their predictive capacity but also an examination 
of their underlying mathematical principles, including probability estimation, decision boundaries, 
and feature importance weighting. The integration of rigorous data preprocessing, feature selection, 
and probabilistic reasoning establishes a foundation for the development of interpretable and robust 
predictive systems in educational analytics. This work aims to contribute to the field of learning 
analytics by integrating algorithmic efficiency with mathematical rigor, offering insights that support 
adaptive learning environments and reduce dropout rates in online education.
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2. CONTENT 
1. Collection and Preprocessing of Data 
The dataset utilized in this research derives from an open e-learning analytics platform containing 
engagement and performance data of online learners. The preprocessing phase entailed the cleansing 
of missing values, the encoding of categorical variables, and the normalization of numerical attributes 
through the utilization of the z-score method. To ensure data integrity, outliers and redundant features 
were removed through a variance-based filtration process. All measurements are expressed in 
accordance with the International System of Units (SI). A statistical analysis was conducted to 
identify dependencies between variables such as activity frequency, time on platform, and assessment 
results. 
2. Mathematical and Algorithmic Framework 
The predictive model is predicated on supervised classification techniques that are underpinned by 
probabilistic and statistical learning theory. Logistic regression was implemented to estimate the 
probability of user attrition using the logistic function: 𝛽𝛽0 

𝑃𝑃(𝑦𝑦 =  1 ∣∣  𝑥𝑥 ) =  
1

�1 + 𝑒𝑒−�𝛽𝛽0+ ∑ 𝛽𝛽ᵢ𝑛𝑛
𝑖𝑖=1 𝑥𝑥ᵢ��

 (1) 

The Random Forest algorithm, which is based on ensemble decision trees, was applied to capture 
nonlinear relationships. In contrast, the Naïve Bayes algorithm provided a mathematically tractable 
baseline, assuming conditional independence of predictors. The training of models was conducted 
using k-fold. The K-fold cross-validation and hyperparameters were optimized through grid search. 
The performance of the model was evaluated using several performance metrics, including accuracy, 
precision, recall, F1-score, and ROC-AUC. 
3. Experimental Results and Analysis 
A comparative analysis of the experimental results indicated that the Random Forest model achieved 
the highest predictive accuracy, followed by Logistic Regression and Naïve Bayes. A thorough 
examination of feature importance revealed that engagement-related features, specifically the 
frequency of logins and the duration spent on course materials, exerted the most significant influence 
on the probability of dropout. Logistic regression was characterized by its high interpretability, 
enabling direct quantification of the influence of the predictors. Conversely, Naïve Bayes 
demonstrated its efficacy in terms of computational efficiency, particularly when dealing with large 
datasets. 
3. CONCLUSIONS 
The present study demonstrated the feasibility and effectiveness of using supervised machine learning 
algorithms to predict the probability of student dropout in online learning environments. The 
application of Logistic Regression, Random Forest, and Naïve Bayes classifiers to metrics and 
academic data led to the identification of key variables influencing course completion, including 
engagement frequency and assessment performance. The integration of mathematical modeling, 
particularly probabilistic estimation and statistical inference, has been demonstrated to enhance the 
interpretability and precision of predictive models. 
The findings emphasize the importance of integrating algorithmic optimization with a robust 
mathematical foundation in the domain of educational analytics. The proposed models have the 
potential to be integrated into e-learning systems as early warning tools, thereby providing instructors 
and institutions with the capacity to develop adaptive interventions aimed at improving student 
retention. Subsequent research endeavors will center on the extension of the framework to encompass 
temporal dynamics, ensemble hybridization, and real-time prediction for large-scale online platforms. 
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Abstract 

This paper proposes Fractional Parameter Fusion (FPF), a new merging approach inspired by fractional calculus, 
which allow non-integer order interpolation between CNN parameter sets. FPF interprets successive CNN versions as 
points along a continuous trajectory in weight space and applies fractional-order operations to produce a merged 
model that encodes both the spatial and historical dependencies between these versions. We compare FPF with 
traditional weight averaging and logit ensemble approaches on the CIFAR-10 dataset, using a ResNet-18 architecture 
exploring both fusing checkpoints from different epochs within the same training run (intra-run fusion) and fusing final 
models from independent runs (inter-run fusion).Our findings indicate that fractional fusion produces smoother model 
transitions and higher representation coherence compared to conventional methods. 

Key words: fractional calculus; ensembling; model merging; parameter fusion; CNN. 

1. INTRODUCTION
Traditional model merging approaches, such as parameter averaging, are simple and computationally 
efficient but rely on the assumption that model parameters occupy similar regions in weight space. In 
practice, model trained independently often diverge to different local minima. Directly averaging 
their weights can lead to destructive interference, resulting in degraded accuracy. Similarly, logit 
ensembling can achieve strong performance but has the overhead of running all models separately 
and then combining the results, limiting practicality.
Recent work in machine learning theory suggests that the training trajectory of a model can be viewed 
as a dynamical system evolving in a high-dimensional manifold [1]. From this perspective, merging 
different versions of the same model, from different epochs of independent runs, can be seen as 
combining different points along this manifold. Traditional linear interpolation neglects the temporal 
and nonlinear dependencies between these points. In contrast, fractional calculus provides a 
mathematical framework for modelling systems with memory and nonlocal behaviour, offering a 
richer representation of the relationships between model states. In this paper, we propose Fractional 
Parameter Fusion (FPF), a new technique for merging CNN versions based on fractional differential 
operators. The central idea is to treat the sequence of model weights as a discrete signal indexed by 
training progress and apply a fractional derivative operator to interpolate between them. This enables 
smoother and more coherent parameter blending.
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2. CONTENT 
The methodology of this paper focuses on three distinct merging strategies: (1) logit ensemble, (2) 
weight averaging, and (3) fractional parameter fusion. Each method combines multiple versions of 
the same CNN model but with either temporal or stochastic variations 
The logit ensemble method operates at the prediction level. Given a set of trained models {𝑓𝑓𝑖𝑖(𝑥𝑥)}𝑖𝑖=1𝑁𝑁 , 
each producing logits for the input x, the ensemble prediction is computed as: 
 

𝑦𝑦𝐿𝐿𝐿𝐿 = 1
𝑁𝑁
∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)
𝑁𝑁
𝑖𝑖=1                                                             (1) 

 
This approach averages decision-level outputs, yielding stable predictions but requires multiple 
forward passes during inference 
The resulting model is structurally identical to its components but relies on the assumption that the 
models occupy approximately the same space in the loss landscape. When this assumption is violated, 
the merged model may preform worse than any individual constituent. 
The proposed Fractional Parameter Fusion introduces a non-integer order interpolation between 
model parameters. We treat the sequence of model weights {𝑊𝑊𝑖𝑖} as discrete signal evolving over 
training time. Using the Grünwald-Letnikov definition of the fractional derivative [2], the fractional 
differential operator 𝐷𝐷𝛼𝛼 acting on a discrete sequence is expressed as: 
 

𝐷𝐷𝛼𝛼𝑊𝑊𝑖𝑖 = ∑ (−1)𝑘𝑘�𝛼𝛼𝑘𝑘�𝑊𝑊𝑖𝑖−𝑘𝑘
𝐾𝐾
𝑘𝑘=0                                                  (3) 

 
The operator introduces memory across past model states, allowing the merged model to encode 
historical information about the training trajectory. 
The final merged model is obtained as a weighted contribution of these fractional derivatives: 
 

𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹 =  ∑ 𝜔𝜔𝑖𝑖𝐷𝐷𝛼𝛼(𝑊𝑊𝑖𝑖)𝑁𝑁
𝑖𝑖=1                                                 (4) 

 
Where 𝜔𝜔𝑖𝑖 are blending coefficients. The fractional order 𝛼𝛼 governs how strongly earlier versions 
influence the merged model. This formulation allows FPF to merge models obtained either from the 
same training run (capturing temporal continuity across epochs) or from independent runs (capturing 
stochastic diversity). 
 
3. CONCLUSIONS 
 
This paper introduced Fractional Parameter Fusion (FPF), a framework for merging multiple CNN 
model versions using concepts from fractional calculus. By treating the evolution of model 
parameters as a discrete temporal process, FPF employs non-integers order differential operator to 
capture long-range dependencies and memory effects between successive model states. When applied 
to both intra-run and inter-run fusion scenarios on the CIFAR-10 dataset, FPF demonstrated its 
potential to improve accuracy metrics while maintaining computational efficiency at inference time. 
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Abstract 
Steganography is the art of concealing information within ordinary data, traditionally by modifying digital media such 
as images, audio, or video. Although effective, such methods are often vulnerable to steganalysis, compression artifacts, 
or format conversions. This paper proposes a conceptual shift: instead of hiding information in the image itself, the data 
is embedded in the mathematical parameters that generate the image. Using the Julia set fractals as a model, the method 
encodes binary data in high-precision numerical parameters that control fractal generation. Each parameter can be 
slightly perturbed within a precision of 2⁻²⁴ to 2⁻²⁶, representing encoded bits while keeping the resulting fractal visually 
indistinguishable from the original. The data is encrypted using AES-GCM, then permuted according to a key. The hidden 
information thus resides entirely in the parametric domain rather than in the image pixels. The implementation 
demonstrates both the potential and the limitations of this approach, showing that while it achieves complete invisibility 
and resistance to conventional steganalysis, the encoded data cannot be recovered from the image alone.  

Key words: steganography; fractals; Julia set; information hiding; cryptography; mathematical modeling; digital art. 

1. INTRODUCTION

The field of steganography has evolved from simple pixel-based manipulations to more sophisticated 
mathematical and algorithmic approaches. Traditional digital image steganography techniques hide 
secret messages within the least significant bits (LSB) of pixels, which allows for large payloads but 
leaves detectable traces under forensic analysis or statistical tests. Furthermore, such methods are 
fragile when the carrier image undergoes transformations such as compression, scaling, or format 
conversion. 

In this context, fractal parameter steganography introduces a fundamentally new direction. The core 
idea is to hide information not in the rendered pixels of an image, but in the mathematical parameters 
that generate it. Fractals, especially those belonging to the Julia and Mandelbrot families, are 
governed by iterative complex equations that are extremely sensitive to parameter variations. This 
sensitivity is exploited here as a medium for information embedding. By making minute, high-
precision changes to the parameters — on the order of 2⁻²⁴ or smaller — it is possible to encode binary 
data without inducing any perceptible alteration in the fractal’s rendered appearance. Thus, the image 
itself remains identical to human vision and to most signal-domain analyses. 

This paradigm shift brings steganography into a new mathematical domain, one that is independent 
of digital signal processing limitations. The following sections describe the encoding procedure, 
experimental setup, and results obtained using a Python implementation of this concept. 
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2. CONTENT  
 

The proposed implementation is based on the Julia set, defined by the iterative complex equation 
𝑧𝑧𝑛𝑛+1 = 𝑧𝑧𝑛𝑛2 + 𝑐𝑐, where 𝑐𝑐 is a complex constant controlling the structure of the fractal. A base set of 
parameters defines the original image: the real and imaginary parts of 𝑐𝑐, the center coordinates, the 
zoom scale, and the maximum iteration count. To embed information, each of these parameters is 
perturbed by a very small delta (𝛥𝛥), representing an encoded subset of bits.  
 
Before embedding, the plaintext message is compressed and encrypted using AES-GCM algorithm. 
This ensures both confidentiality and integrity of the payload. The encryption key is derived from the 
user’s password through a one-way hash function combined with a randomly generated salt. The 
encrypted data is then converted to a bit sequence and distributed among the delta values using a 
pseudorandom permutation based on the same password-derived key. Each JuliaRecipe data structure 
in the Python implementation can store approximately 110 bits of information. For longer messages, 
the data is split into multiple recipes, each corresponding to a slightly modified fractal instance. The 
encoded parameters are stored in JSON format to enable perfect reconstruction and decoding.  
 
To further analyze the results, three comparative visualizations were generated in order to assess the 
visual and statistical effects of parameter embedding. In the figure below, the original fractal image 
is compared with the encoded version and with their RGB difference map. It can be observed that the 
two images are visually identical, with no perceptible distortion or colour deviation introduced by the 
embedding process. The difference map confirms that the perturbations applied to the fractal 
parameters remain below the visible threshold, ensuring the complete imperceptibility of the hidden 
message. 
 

 
Figure 1. Comparison between the original, encoded fractal images and their RGB difference map 

 
 

In the following figure, the statistical distributions of pixel intensities and escape-iteration counts are 
presented. Both histograms maintain an almost identical profile, indicating that the encoding process 
does not distort the natural dynamics of the Julia set generation. This stability of the distributions 
demonstrates that the hidden data modifies only the underlying numerical precision of the parameters, 
without affecting the global visual or statistical structure of the fractal image. 
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Figure 2. Normalized pixel intensity and escape-iteration histograms 

 
A more detailed numerical perspective is offered in the next figure, where the 𝛥𝛥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 heatmap 
reveals the internal computational differences between the two fractals. Although these variations are 
mathematically measurable, they remain invisible in the rendered output, being distributed 
harmoniously within the fractal geometry itself. This proves that the message is embedded at the 
parameter level rather than in the visual texture, representing a true parametric steganographic 
process. 
 

 
Figure 3. 𝛥𝛥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 heatmap showing internal parameter differences 

 
The quantitative evaluation confirms these observations. For an encoded image of 900×640 pixels, 
the embedding capacity reaches 110 bits per recipe, while the Peak Signal-to-Noise Ratio (PSNR) 
and the Structural Similarity Index (SSIM) register values of 10.13 dB and 0.374074 respectively. 
Despite the measurable numerical deviations, the image remains visually unchanged, confirming that 
the embedding of encrypted data within fractal parameters preserves complete perceptual fidelity. 
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Figure 4. Quantitative metrics of the encoded fractal 

 
Overall, these analyses demonstrate that the hidden information is located exclusively in the high-
precision numerical space of the fractal parameters. The resulting images are visually 
indistinguishable from one another, yet correspond to distinct mathematical seeds that encapsulate 
the encrypted payload. Without access to the exact parameter configuration and the correct decryption 
password, the embedded message cannot be recovered, providing a double layer of protection that 
combines cryptographic robustness with visual invisibility. 
 
3. CONCLUSIONS  
 
Fractal parameter steganography extends the boundaries of information hiding by operating entirely 
in the parametric domain. Instead of modifying digital media at the pixel level, it embeds encrypted 
information in the numerical parameters that define a fractal image. The resulting image is a faithful 
visual reproduction of the original, indistinguishable both to the human eye and to statistical image 
analysis tools. 
 
The method’s advantages include complete visual transparency, resilience to compression and format 
conversion, and the ability to combine with modern cryptographic algorithms for enhanced 
confidentiality. Its limitations lie in the requirement for exact parameter recovery and the relatively 
low bit capacity per fractal recipe. However, for small payloads such as cryptographic keys, metadata, 
or authentication tags, the method is highly suitable.  
 
Beyond its technical value, the approach also illustrates an intersection between mathematics, art, and 
computer science. It demonstrates how abstract mathematical constructs like fractals can act as 
carriers of digital information, blurring the line between data encoding and creative visualization. 
Future work may explore multi-fractal embeddings, adaptive bit allocation, and integration with 
procedural graphics engines to achieve larger capacities while preserving invisibility.  
 
One compelling use case is the secure embedding of cryptographic keys, blockchain metadata, or 
authentication tokens directly into visual artifacts, enabling dual-purpose media that functions both 
aesthetically and as a secure data container. This approach could be leveraged in digital art 
authentication and NFT provenance, where the fractal parameters serve as an immutable and visually 
invisible signature tied to ownership or identity. 
 
In conclusion, fractal parameter steganography provides both a secure and conceptually elegant 
medium for hidden communication, representing an innovative educational tool and a novel research 
direction within information security and digital art. 
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Abstract 

The theory of convex functions represent one of the most fundamental and rich areas in mathematical analysis and 
has significant impact in optimization theory, functional analysis, and applied mathematics. Our study offer a 
systematic classifications of various types of convex functions, exploring their theoretical foundations, 
characterizations, and practical applications. We examine classical convex functions along their numerous 
generalizations, such as s-convex, η-convex functions, h-convex, harmonically convex, logarithmically convex, 
strongly convex functions, among others. Corroborating existing literature, our work illustrate their relationships, 
similarities, and directions between different classes of convex functions, providing researchers with a unified 
framework for understanding these mathematical structures. Our analysis expose how various convexity concepts 
emerge naturally from different mathematical contexts and evidence their interconnected nature. This classification 
serves as a valuable resource for optimization practitioners, and researchers working in related fields, facilitating 
better understanding and application of convex function theory. 

Key words: convex functions, s-convex, η-convex functions, h-convex, harmonically convex, logarithmically convex, 
strongly convex functions, duality, optimization 

1. INTRODUCTION
The theory of convex functions is a cornerstone of contemporary mathematical analysis, strongly
bonding deep geometric intuitions and rigorous analytical frameworks. These functions are not
merely abstract constructs; they encapsulate the variational basis of numerous disciplines, ranging
from the calculus of variations and nonlinear PDEs to modern optimization, machine learning, and
information theory (Rockafellar, 1970; Borwein & Vanderwerff, 2010). Far from being monolithic,
convex functions open a spectrum of complexity that mirrors the structural richness of the
functional spaces on which they are defined. Their classification constitutes both a practical
necessity and a profound theoretical endeavor (Boyd & Vandenberghe, 2004; Bauschke &
Combettes, 2017).
The convex analysis lies the notion of convexity to functions: mappings from vector spaces (often 
Banach or Hilbert spaces) into the extended real line whose epigraphs are convex sets. While 
seemingly simple, this definition carries a vast analytic depth, bridging topological, geometrical, 
and variational perspectives (Ekeland & Temam, 1999; Brézis, 2010). Convexity in infinite 
dimensional spaces is nuanced by weak topologies, duality pairings, and the geometry of functional 
spaces, such as reflexive Banach spaces and uniformly convex Hilbert spaces (Rudin, 1991; Barbu 
& Precupanu, 2012). The toolkit here is vast and subtle: Hahn–Banach separation theorems, 
Fenchel–Legendre transforms, and monotonicity theory form the backbone of many later 
classifications (Fenchel, 1949; Moreau, 1965). These foundational results are not isolated curiosities 
but are deeply embedded in variational formulations, optimal transport, and even equilibrium 
theories in physics and economics. 
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2. CONTENT 
Convex functions are not a homogeneous types. Their classification grounded on a host of 
properties: lower semicontinuity, differentiability (in various senses), strict, lower and strong 
convexity, as well as representability via dualization techniques such as the Legendre–Fenchel 
transform (Rockafellar, 1974; Clarke, 1983). Lower semicontinuity, for example, ensures the 
attainment of minima under coercivity, a principle central to the direct method in the calculus of 
variations (Minty, 1962; Fitzpatrick, 1988). Equally, one distinguishes between functions operating 
over classical Sobolev or BV spaces and those defined in the context of measure theory or abstract 
metric spaces, where standard tools may no longer apply (Villani, 2003). With the development of 
convexity in nonlinear spaces, particularly Hadamard spaces, novel notions of geodesic convexity 
and non-smooth analysis have emerged (Treanță, 2015). Differentiability categories, such as 
Gâteaux versus Fréchet differentiability, are essential in understanding not just regularity, but the 
very geometry of the minimization landscape (Luenberger, 1997; Hiriart-Urruty & Lemaréchal, 
2001). 
A refined typology of convex functions reveals multiple intersecting families. Strict convexity, 
often invoked to guarantee uniqueness of minimizers, is indispensable in both theoretical analysis 
and computational algorithms (Borwein & Vanderwerff, 2010). Strong convexity introduces a 
modulus that quantifies curvature, yielding robust convergence properties and error bounds in 
numerical optimization (Nesterov, 2003). Polyhedral and sub linear functions, often arising in 
piecewise linear settings, connect with dual polyhedral geometry and support function 
representations (Clarke, 1983; Aubin & Frankowska, 2009). Meanwhile, theoretic formulations 
such as entropy, information divergence, and transport energies, suggest deep involvement between 
convex analysis, geometry, and probability (Santambrogio, 2015; Peyré & Cuturi, 2019). 
The duality of convex functions theory lies in the Fenchel–Moreau theorem: every proper, lower 
semicontinuous convex functional is the biconjugate of its convex conjugate (Fenchel, 1949; 
Rockafellar, 1974). This result is foundational. Duality theory facilitates the transition between 
primal and dual variational formulations, often simplifying complex constrained problems into 
solvable dual ones (Ekeland & Temam, 1999). Subdifferential calculus, maximal monotonicity, and 
the geometry of dual cones are deeply woven into this framework (Fitzpatrick, 1988). Moreau’s 
decomposition theorem and vaste theory offer operational mechanisms for regularization and 
projection in convex settings (Moreau, 1965). In nonlinear metric contexts like Hadamard spaces, 
these tools require significant generalization, and recent advances, such as those by (Treanță, 2015) 
and many others analogues. 
 
3. CONCLUSIONS 
 
This review has light the huge and complex taxonomy of convex functions, grounding their 
classification in rigorous mathematical frameworks while highlighting their vast applicability. From 
duality theory to the concrete exigencies of numerical optimization and variational modeling, 
convex functions serve as a connective tissue across diverse domains. Recent explorations, 
especially in non-Euclidean and geometric contexts such as Hadamard spaces, underscore the 
vitality and evolution of this field (Rockafellar, 1970; Treanță, 2015; Ekeland & Temam, 1999). 
The journey from epigraphs to entropy, from sub-differentials to geodesics, reveals not just a 
theory, but a dynamic, unifying vision of mathematical structure and its application. 
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Abstract 

In the last 10 years, various mathematical competitions have featured several linear algebra 
problems requiring the determination of matrices from ℳ (ℝ), ℳ (ℂ) or ℳ (ℤ) that are 
invariant under certain functions of 𝑛𝑛  variables. In most studied cases, the sought-after sets form 
important algebraic structures, like finite groups or classical matrix groups. In this paper, we study 
several classes of such matrices that leave several remarkable functions invariant. 

Key words: integer matrices; invariant; matrix groups; mathematical competitions. 

1. INTRODUCTION
Let  𝑛𝑛  ∈ ℕ ,  𝑛𝑛  ≥ 2 . We denote ℳ𝑛𝑛 ,1(ℤ) = ℤ𝑛𝑛  = {𝑋𝑋  = [𝑥𝑥 1𝑥𝑥 2 … 𝑥𝑥 ] , 𝑥𝑥 1, 𝑥𝑥 2, … , 𝑥𝑥 𝑛𝑛  ∈ 
ℤ}.
Consider the functions  𝑓𝑓𝑘𝑘: ℤ𝑛𝑛  → ℤ , 𝑘𝑘 = 1,2, … ,6, defined by: 𝑓𝑓1(𝑋𝑋) = gcd{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} (O.N.M. 
2018), 𝑓𝑓2(𝑋𝑋) = ∑𝑖𝑖=1 |𝑥𝑥𝑖𝑖|  (O.N.M. 2007), 𝑓𝑓3(𝑋𝑋) = max�|𝑥𝑥𝑖𝑖|,  𝑖𝑖 = 1, 𝑛𝑛 � (SEEMOUS 2007), 
𝑓𝑓4(𝑋𝑋) = ∑𝑖𝑖=1 𝑥𝑥𝑖𝑖2 (G.M.A. 2008), 𝑓𝑓5(𝑋𝑋) = ∑𝑖𝑖=1 𝑥𝑥𝑖𝑖,  𝑓𝑓6(𝑋𝑋) = ∏𝑖𝑖=1 𝑥𝑥𝑖𝑖.
We say that a matrix 𝐴𝐴 ∈ ℳ𝑛𝑛(ℤ) leaves the function 𝑓𝑓𝑘𝑘 invariant if 𝑓𝑓𝑘𝑘(𝑋𝑋) = 𝑓𝑓𝑘𝑘(𝐴𝐴𝑋𝑋), for all 𝑋𝑋 ∈  ℤ𝑛𝑛. 
We denote by 𝐺𝐺𝑘𝑘 ⊂ ℳ𝑛𝑛(ℤ) the set of matrices that leave the function 𝑓𝑓𝑘𝑘 invariant.
The purpose of this paper is to characterize or explicitly determine the sets 𝐺𝐺𝑘𝑘, 𝑘𝑘 = 1,2, … ,6. 

2. MAIN RESULTS
Theorem 1. A matrix 𝐴𝐴 ∈ ℳ𝑛𝑛(ℤ)  leaves the function 𝑓𝑓1 invariant if and only if det 𝐴𝐴 ∈ {−1, +1}. 
Corollary 1. 𝐺𝐺1 = (GL𝑛𝑛(ℤ),⋅).
Theorem 2. Fix 𝑘𝑘 ∈ {2,3,4}. A matrix 𝐴𝐴  ∈ ℳ𝑛𝑛(ℤ)  leaves the function 𝑓𝑓𝑘𝑘 invariant if and only if it 
has exactly one non-zero element, equal to +1 or -1, in each row and each column. 
Corollary 2. 𝐺𝐺2 = 𝐺𝐺 3 = 𝐺𝐺4  = (O𝑛𝑛(ℤ),⋅), the mult iplicative grou p (wit h 2𝑛𝑛𝑛𝑛! elemen ts) of 
orthogonal matrices (𝐴𝐴 ⋅ 𝐴𝐴 𝑡𝑡 = 𝐴𝐴 𝑡𝑡 ⋅ 𝐴𝐴 = 𝐼𝐼𝑛𝑛), which is a subgroup of (GL𝑛𝑛(ℤ),⋅). 
Theorem 3. A matrix 𝐴𝐴 ∈ ℳ𝑛𝑛(ℤ)  leaves the function 𝑓𝑓5 invariant if and only if the sum of the entries 
in each column is equal to 1. 
Remark 1. 𝐺𝐺5 is infinite and does not form a group in either ℳ𝑛𝑛(ℤ) or (GL𝑛𝑛(ℤ),⋅). 
Theorem 4. A matrix 𝐴𝐴 ∈ ℳ𝑛𝑛(ℤ)  leaves the function 𝑓𝑓6 invariant if and only if on each row and on 
each column, there is exactly one nonzero entry equal to 1 or -1, and the number of entries equal to 
-1 is even.
Corollary 3. 𝐺𝐺6 is a multiplicative group (with 2𝑛𝑛−1𝑛𝑛! elements) and a subgroup of (GL𝑛𝑛(ℤ),⋅).
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Abstract 

We present an example illustrating how existing restrictions on the form of a matrix can yield substantial information 
when combined with appropriate analytical tools. An initial approach based on elementary algebraic manipulations 
and maximality principles provides a correct solution but offers limited insight into the matrix’s structure. In contrast, 
by applying the Perron–Frobenius Theorem, we demonstrate how one can extract meaningful information about the 
eigenvalues and eigenvectors of a positive matrix solely from its form. The Perron–Frobenius Theorem plays a central 
role in the study of positive matrices and has led to significant results in both theoretical and applied mathematics, 
including Markov chain theory and the PageRank algorithm. This paper aims to illustrate how the theorem provides 
deep insight into the intrinsic properties of positive matrices, information that would otherwise remain inaccessible 
through basic algebraic methods. 

Key words: positive matrices, Perron–Frobenius theorem, linear algebra, spectral radius, eigenvalues. 

1. INTRODUCTION
The Perron–Frobenius Theorem is a fundamental result in the study of positive matrices, with
numerous consequences that allow one to derive deep structural properties of such matrices. In many
disciplines, including probability theory, statistics, and algorithmic analysis, the theory of positive
matrices has proven essential to solving major problems, notably in Markov chain theory and the
PageRank algorithm. The purpose of this paper is to illustrate how the Perron–Frobenius Theorem
can be employed to extract additional information about a matrix based solely on its positivity. To
this end, we examine a problem involving positive matrices and vectors, presenting two approaches:
a classical method that provides a correct solution but no further structural insight, and an approach
grounded in the theory of positive matrices, which reveals substantial information about the matrix’s
internal structure.

2. CONTENT
Our application focuses on the following problem:

Let 𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛(ℝ) be such that all entries are strictly positive real numbers, and let 𝒖𝒖,𝒗𝒗 ∈  ℝ𝑛𝑛 be two vectors also 
with strictly positive elements, such that: 

𝐴𝐴𝒖𝒖 = 𝒗𝒗 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝒗𝒗 = 𝒖𝒖 
Prove that 𝒖𝒖 = 𝒗𝒗. 
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The original solution splits the problem into two cases. The first case, where 𝒖𝒖 𝑎𝑎𝑎𝑎𝑎𝑎 𝒗𝒗 are linearly 
dependent and then the second case where they are linearly independent. 

This solution only utilizes elementary ideas and relations and does not dive so deep into the theory of 
positive matrices and advanced linear algebra. 

The second solution we present looks at the problem from the point of view of the theory of positive 
matrices and gives deeper insight into the relations between the given problem and the spectrum of 
the matrix A, thus highlighting the utility of the Perron-Frobenius Theorem for positive matrices. 

We will first state the problem we want to analyze.  

After this we will look at the first solution to the problem. 

After the first solution we will give the statement for the Perron-Frobenius Theorem for Positive 
Matrices. 

And finally, we will present the second solution to the problem utilizing the previously discussed 
theorem. 

3. CONCLUSIONS

By exploiting the particular form of the given matrix and vectors we can derive a lot of information 
about the spectrum of the matrix utilizing the rich theory of positive matrices and the Perron-
Frobenius Theorem. The Perron-Frobenius Theorem provides a foundation for the study of 
eigenvalues and eigenvectors of positive matrices as can be seen in the example we presented. This 
emphasizes how important it is to consider the information that can be extracted from the restrictions 
present on a given matrix’s form. 

BIBLIOGRAPHY 
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